985 resultados para Oxford (GB)
Resumo:
An increased risk of early pregnancy loss in women briefly exposed to high levels of ambient particulate matter during the preconceptional period was recently observed. The effects of this exposure on early embryo development are unknown. This study was designed to assess the dose-response and biological effects of diesel exhaust particles (DEP) on in vitro embryo development using the in vitro fertilization (IVF) mouse model. Zygotes obtained from superovulated mice after IVF were randomly cultured in different DEP concentrations (0, 0.2, 2, and 20 mu g/cm(2)) for 5 days and observed for their capacity to attach and develop on a fibronectin matrix until day 8. Main outcome measures included blastocyst rates 96 and 120 h after insemination, hatching discriminatory score, total cell count, proportion of cell allocation to inner cell mass (ICM) and trophectoderm (TE), ICM morphology, attachment rate and outgrowth area, apoptosis and necrosis rates, and Oct-4 and Cdx-2 expression. Multivariate analysis showed a negative dose-dependent effect on early embryo development and hatching process, blastocyst cell allocation, and ICM morphology. Although blastocyst attachment and outgrowth were not affected by DEP, a significant impairment of ICM integrity was observed in day 8 blastocysts. Cell death through apoptosis was significantly higher after DEP exposure. Oct-4 expression and the Oct-4/Cdx-2 ratio were significantly decreased in day 5 blastocysts irrespective of DEP concentration. Results suggest that DEP appear to play an important role in disrupting cell lineage segregation and ICM morphological integrity even at lower concentrations, compromising future growth and viability of the blastocyst.
Resumo:
Infection with GB virus C (GBV-C) or hepatitis G virus (HGV) is highly prevalent among HIV/AIDS patients. GBV-C/HGV viremia has not been associated with liver disease and seems to slow HIV disease progression. To study the GBV-C/HGV genotypes prevalence among HIV/AIDS patients and its association with HIV viral load (VL) and CD4+ lymphocyte counts. From February 2003 to February 2004, we analyzed 210 HIV-1-infected subjects who were on anti-retroviral therapy (ART). For 63 of them a PCR-nested to the non-coding 5` (5`NCR) region of the GBV-C/HGV was done, and for 49 a DNA direct sequencing was done. A phylogenetic analysis was performed by PHYLIP program. 63(30%) of the HIV-1-infected patients were co-infected with GBV-C/HGV. The phylogenetic analysis revealed the following genotypes (and respective relative frequencies): 1(10%), 2a (41%), 2b (43%), and 3 (6%). Co-infected patients presented lower HIV-1 VL and higher T CD4+ lymphocyte cells counts as compared with patients negative for GBV-C/HGV sequences (log = 4.52 vs. 4.71, p = 0.036), and T CD4+ lymphocyte counts (cells/mm(3) = 322.6 vs. 273.5, p = 0.081, respectively). T CD4+ cells counts equal to, or higher than, 200/mm(3) were significantly more common among co-infected patients than among HIV-infected-only patients (p = 0.042). The lowest T CD4+ cells counts were associated with genotype 1 and the highest with genotype 2b (p = 0.05). The GBV-C/HGV infection prevalence was 30% among HIV-1-infected subjects, and was associated with lower VL and higher CD4+ lymphocyte counts. GBV-C/HGV genotype 2b may be associated with better immunological response. Published by Elsevier B.V.
Resumo:
Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and Sao Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model. Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7-408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log(10) copies/mL; 95% CI, .90-3.25 log(10) copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001). Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.
Resumo:
Background. Sensitized patients (pts) may develop acute antibody-mediated rejection (AMR) due to preformed donor-specific antibodies, undetected by pre-transplant complement-dependent cytotoxicity (CDC) crossmatch (XM). We hypothesized that C4d staining in 1-h post-reperfusion biopsies (1-h Bx) could detect early complement activation in the renal allograft due to preformed donor-specific antibodies. Methods. To test this hypothesis, renal transplants (n = 229) performed between June 2005 and December 2007 were entered into a prospective study of 1-h Bx and stained for C4d by immunofluorescence. Transplants were performed against a negative T-cell CDC-XM with the exception of three cases with a positive B-cell XM. Results. All 229 1-h Bx stained negative for C4d. Fourteen pts (6%) developed AMR. None of the 14 protocol 1-h Bx stained positive for C4d in peritubular capillaries (PTC). However, all indication biopsies-that diagnosed AMR-performed at a median of 8 days after transplantation stained for C4d in PTC. Conclusions. These data show that C4d staining in 1-h Bx is, in general, not useful for the early detection of AMR when CDC-XM is negative.
Resumo:
Background. The functional haemodynamic variables pulse pressure variation (PPV), stroke volume variation (SVV), and systolic pressure variation (SPV) are widely used to assess haemodynamic status. However, it is not known how these perform during acute lung injury (ALI). This study evaluated the effects of different ventilatory strategies on haemodynamic parameters in pigs with ALI during normovolaemia and hypovolaemia. Methods. Eight anaesthetized Agroceres pigs [40 (1.9) kg] were instrumented with pulmonary artery, PiCCO, and arterial catheters and ventilated. Three ventilatory settings were randomly assigned for 10 min each: tidal volume (VT) 15 ml kg(-1) and PEEP 5 cm H(2)O, VT 8 ml kg(-1) and PEEP 13 cm H(2)O, or VT 6 ml kg(-1) and PEEP 13 cm H(2)O. Data were collected at each setting at baseline, after ALI (lung lavage+Tween 1.5%), and ALI with hypovolaemia (haemorrhage to 30% of estimated blood volume). Results. At baseline, high VT increased PPV, SVV, and SPV (P < 0.05 for all). During ALI, high VT significantly increased PPV and SVV [(P = 0.002 and P = 0.008) respectively.]. After ALI with hypovolaemia, ventilation at VT 6 ml kg(-1) and PEEP 13 cm H(2)O decreased the accuracy of functional haemodynamic variables to predict hypovolaemia, with the exception of PPV (area under the curve 0.875). The parameters obtained by PiCCO were less influenced by ventilatory changes. Conclusions. VT is the ventilatory parameter which influences functional haemodynamics the most. During ventilation with low VT and high PEEP, most functional variables are less able to accurately predict hypovolaemia secondary to haemorrhage, with the exception of PPV.