881 resultados para Osmotic and ionic regulation
Resumo:
Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.
Resumo:
Animal replication-dependent histone mRNAs are subject to several post-transcriptional regulatory processes. Their non-polyadenylated 3' ends are formed preferentially during S phase by a unique nuclear cleavage event. This requires the base pairing between U7 snRNA and a histone spacer element 3' of the cleavage site. Cleavage occurs preferentially after adenosine, at a fixed distance from the hybrid region. A conserved RNA hairpin just upstream of the cleavage site is recognised by the hairpin binding protein (HBP) that acts as an auxiliary processing factor, stabilising the interaction of the histone pre-mRNA with the U7 snRNP. The interaction between HBP and the RNA hairpin is very stable and HBP is also found associated with histone mRNAs on polysomes. The hairpin and presumably, HBP are also required for nuclear export and translation of histone mRNA. Furthermore, histone mRNAs are selectively destabilised in the G2 phase or upon inhibition of DNA synthesis and this regulation is also associated with the hairpin. Recently, HBP-encoding cDNAs were isolated from various organisms. Human, mouse and Xenopus laevis HBPs are similar, while the Caenorhabditis elegans protein has significant homology to the others only in a central RNA binding domain.Copyright 1997 Academic Press Limited
Resumo:
Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.
Resumo:
The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.
Resumo:
Regulatory change not seen since the Great Depression swept the U.S. banking industry beginning in the early 1980s and culminated with the Interstate Banking and Branching Efficiency Act of 1994. Banking analysts anticipated dramatic consolidation with large numbers of mergers and acquisitions. Some expressed concern about the long-term health of the smaller community banks. This paper describes and discusses the actual evolution of the U.S. banking industry over the past two decades, using the 1976 to 1998 Report of Condition and Income (Call Report) and merger data recently posted on the web site of the Federal Reserve Bank of Chicago. Among several results, more permissive interstate banking and branching regulation significantly associates with higher merger rates, with lower net entry rates, and with higher concentration within states. Interestingly, more permissive intrastate banking and branching regulation only associates with higher concentration.
Resumo:
The ability to regulate cell cycle progression is one of the differences that separates normal from tumor cells. A protein, which is frequently mutated or deleted in a majority of tumor cells, is the retinoblastoma protein (pRb). Previously, we reported that normal cells, which have a wild-type Rb pathway, can be reversibly arrested in the G1 phase of the cell cycle by staurosporine (ST), while tumor cells were unaffected by this treatment. As a result, ST may be used to protect normal cells against the toxic affects of chemotherapy. Here we set out to determine the mechanism(s) by which ST can mediate a reversible G1 arrest in pRb positive cells. To this end, we used an isogenic cell model system of normal human mammary epithelial cells (HMEC) with either intact pRb+ (p53-) or p53+ (pRb-) treated with ST. Our results show that pRb+ cells treated with low concentrations of ST, arrested in the G1 phase of the cell cycle; however, in pRb - cells there was no response. This was verified as a true G 1 arrest in pRb+ cells by two different methods for monitoring cell cycle kinetics and in two additional model systems for Rb (i.e. pRb -/- mouse embryo fibroblasts, and downregulation of RB with siRNA). Our results indicated that ST-mediated G1 arrest required pRb, which in turn initiated a cascade of events leading to inhibition of CDK4 and CDK2 activities and up-regulation of p21 protein. Further assessment of this pathway revealed the novel finding that Chk1 expression and activity were required for the Rb-dependent, ST-mediated G1 arrest. In fact, overexpression of Chk1 facilitated recovery from ST-mediated G1 arrest, an effect only observed in RB+ cells. Collectively, our data suggest pRb is able to cooperate with Chk1 to mediate a G1 arrest in pRb+ cells, but not in pRb- cells. The elucidation of this pathway can help identify novel agents that can be used to protect cancer patients against the debilitating affects of chemotherapy, by targeting only the normal proliferating cells in the body that are otherwise destroyed. ^
Resumo:
Recent progress in diagnostic tools allows many breast cancers to be detected at an early pre-invasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. 14-3-3 is a family of highly conserved and ubiquitously expressed proteins that are expressed in all eukaryotic organisms. In mammals there are seven isoforms, which bind to phosphor-serine/threonine residues regulating essential cellular processes such as signal transduction, cell cycle progression, and apoptosis. Our laboratory has discovered that a particular 14-3-3 family member, Zeta, is overexpressed in over 40% of breast tumor tissues. Furthermore, I examined the stage of breast disease in which 14-3-3ζ overexpression occurs and found that increased expression of 14-3-3ζ begins at the stage of atypical ductal hyperplasia, a very early stage of breast disease that confers increased risk for progress toward breast cancer. To determine whether 14-3-3ζ overexpression is a decisive early event in breast cancer, I overexpressed 14-3-3ζ in MCF10A cells, a non-transformed mammary epithelial cell (MEC) line and examined its impact on acini formation in a three dimensional (3D) culture model which simulates a basic unit of structure in the mammary gland. I discovered that 14-3-3ζ overexpression severely disrupted the acini architecture resulting in the disruption of polarity and luminal filling. Both are critical morphological events in the pre-neoplastic breast disease. This thesis focuses on the molecular mechanism of luminal filling. Proper lumen formation is a result of anoikis, a specific type apoptosis of cells not attached to the basement membrane. I found that 14-3-3ζ overexpression conferred a resistance to anoikis. Additionally, 14-3-3ζ overexpression in MCF10A cells and in MECs from 14-3-3ζ transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3ζ induced hyperactivation of the PI3K/Akt pathway which led to phosphorylation and translocation of the MDM2 to the nucleus resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3ζ overexpressing MCF10A acini in 3D cultures. These data suggest that 14-3-3ζ overexpression is a critical event in early breast disease and down-regulation of p53 is one of the mechanisms by which 14-3-3ζ alters MEC acini structure and may increase the risk of progression to breast cancer. ^
Resumo:
The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.
Resumo:
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^
Resumo:
Arctic shelf zooplankton communities are dominated by the copepod Calanus glacialis. This species feeds in surface waters during spring and summer and accumulates large amounts of lipids. Autumn and winter are spent in dormancy in deeper waters. Lipids are believed to play a major role in regulating buoyancy, however, they cannot explain fine-tuning of the depth distribution. To investigate whether ion exchange processes and acid-base regulation support ontogenetic migration as suggested for Antarctic copepods, we sampled C. glacialis in monthly intervals for 1 yr in a high-Arctic fjord and determined cation concentrations and the extracellular pH (pHe) in its hemolymph. During the winter/spring transition, prior to the upward migration of the copepods, Li+ ions were exchanged with cations (Na+, Mg2+, and Ca2+) leading to Li+ concentrations of 197 mmol/L. This likely decreased the density and promoted upward migration in C. glacialis. Our data thus suggest that Li+ has a biological function in this species. Ion and pHe regulation in the hemolymph were not directly correlated, but the pHe revealed a seasonal pattern and was low (5.5) in winter and high (7.9) in summer. Low pHe during overwintering might be related to metabolic depression and thus, support diapause.
Resumo:
Homeostatic regulation allows organisms to secure basic physiological processes in a varying environment. To counteract fluctuations in ambient carbonate system speciation due to elevated seawater pCO2 (hypercapnia), many aquatic crustaceans excrete/accumulate acid-base equivalents through their gills; however, not much is known about the role of ammonia in this response. The present study investigated the effects of hypercapnia on acid-base and ammonia regulation in the Dungeness crab, Metacarcinus magister on the whole animal and isolated gill levels. Hemolymph pCO2 and [HCO3]- increased in M. magister acclimated to elevated pCO2 (330 Pa), while pH remained stable. Additionally, hemolymph [Na+], [Ca2+], and [SO4]2- were significantly increased. When challenged with varying pH during gill perfusion, the pH of the artificial hemolymph remained relatively unchanged. Overall, ammonia production and excretion, as well as oxygen consumption, were reduced in crabs acclimated to elevated pCO2, demonstrating that either (amino acid) oxidation is reduced in response to this particular stress, or nitrogenous wastes are excreted in an alternative form.
Resumo:
The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO2 partial pressure (pCO2) with higher N2 fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO2(150 and 900 µatm) and light (50 and 200 µmol photons m-2 s-1) on TrichodesmiumIMS101. We expand on a complementary study that demonstrated that while elevated pCO2 enhanced N2 fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO2 and light controlled the operation of the CO2-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO2 and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N2 fixation and growth at elevated pCO2 and light. We suggest that changes in the redox state of the photosynthetic electron transportchain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enableTrichodesmium to flourish in future surface oceans characterized by elevated pCO2, higher temperatures, and high light.
Resumo:
This chapter aims at contributing to the trade and energy debate by focusing on the specific issue of export restrictions. It starts from the premise that a balanced and efficient regulation of export barriers in the energy sector would contribute to tackle emerging energy concerns such as energy security and the elimination of fossil fuel subsidies in light of the challenge of climate change mitigation. It assesses the adequacy of existing WTO rules on export restrictions and accordingly identifies the main gaps and inconsistencies inherent in the current disciplines from an energy-specific perspective. Finally, it discusses the merits of an energy-specific approach to advance existing disciplines in the most deficient area of export duties based on the systematisation of the Russian ‘model’. Such approach could raise the overall level of commitments in the energy sector while still allowing for the systemic applicability of GATT environmental exceptions in a manner consistent with the principle of sustainable development recognised in the Preamble of the WTO Agreement.