960 resultados para Optical pattern recognition.
Fourier analysis and gabor filtering for texture analysis and local reconstruction of general shapes
Resumo:
Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.
Resumo:
We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.
Resumo:
This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.
Resumo:
We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.
Resumo:
Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.
Resumo:
First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.
Resumo:
Among several others, the on-site inspection process is mainly concerned with finding the right design and specifications information needed to inspect each newly constructed segment or element. While inspecting steel erection, for example, inspectors need to locate the right drawings for each member and the corresponding specifications sections that describe the allowable deviations in placement among others. These information seeking tasks are highly monotonous, time consuming and often erroneous, due to the high similarity of drawings and constructed elements and the abundance of information involved which can confuse the inspector. To address this problem, this paper presents the first steps of research that is investigating the requirements of an automated computer vision-based approach to automatically identify “as-built” information and use it to retrieve “as-designed” project information for field construction, inspection, and maintenance tasks. Under this approach, a visual pattern recognition model was developed that aims to allow automatic identification of construction entities and materials visible in the camera’s field of view at a given time and location, and automatic retrieval of relevant design and specifications information.
Resumo:
Images represent a valuable source of information for the construction industry. Due to technological advancements in digital imaging, the increasing use of digital cameras is leading to an ever-increasing volume of images being stored in construction image databases and thus makes it hard for engineers to retrieve useful information from them. Content-Based Search Engines are tools that utilize the rich image content and apply pattern recognition methods in order to retrieve similar images. In this paper, we illustrate several project management tasks and show how Content-Based Search Engines can facilitate automatic retrieval, and indexing of construction images in image databases.
Resumo:
We present a model for early vision tasks such as denoising, super-resolution, deblurring, and demosaicing. The model provides a resolution-independent representation of discrete images which admits a truly rotationally invariant prior. The model generalizes several existing approaches: variational methods, finite element methods, and discrete random fields. The primary contribution is a novel energy functional which has not previously been written down, which combines the discrete measurements from pixels with a continuous-domain world viewed through continous-domain point-spread functions. The value of the functional is that simple priors (such as total variation and generalizations) on the continous-domain world become realistic priors on the sampled images. We show that despite its apparent complexity, optimization of this model depends on just a few computational primitives, which although tedious to derive, can now be reused in many domains. We define a set of optimization algorithms which greatly overcome the apparent complexity of this model, and make possible its practical application. New experimental results include infinite-resolution upsampling, and a method for obtaining subpixel superpixels. © 2012 IEEE.
Resumo:
In the modern and dynamic construction environment it is important to access information in a fast and efficient manner in order to improve the decision making processes for construction managers. This capability is, in most cases, straightforward with today’s technologies for data types with an inherent structure that resides primarily on established database structures like estimating and scheduling software. However, previous research has demonstrated that a significant percentage of construction data is stored in semi-structured or unstructured data formats (text, images, etc.) and that manually locating and identifying such data is a very hard and time-consuming task. This paper focuses on construction site image data and presents a novel image retrieval model that interfaces with established construction data management structures. This model is designed to retrieve images from related objects in project models or construction databases using location, date, and material information (extracted from the image content with pattern recognition techniques).
Resumo:
Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases. © 2009 IEEE.