941 resultados para Optical Kerr effect
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O-2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 degrees C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.
Resumo:
The objective of this study was to assess penetration of adhesive material in enamel bleached with 35% hydrogen peroxide using optical polarized light microscopy. Extracted human teeth were randomly assigned to 5 groups, each representing a specific time interval between bleaching and the application of an adhesive material. They were designated as: (TC) the control group-restorations in unbleached teeth; (T0) comprising restorations carried out immediately after bleaching; (T7) comprising restorations 7 days after bleaching; (T14) comprising restorations 14 days after bleaching; and (T21) comprising restorations 21 days after bleaching. Length of resin tags was measured with an Axiophot photomicroscope at a x 400 magnification, and the results subjected to an ANOVA for a comparison between groups, with a p value of < 0.05. Differences between the groups were verified using a Tukey test at a confidence level of 5%. The specimens in the control group (TC) and experimental groups T7, T14 and T21 showed better penetration of adhesive material into enamel in comparison with experimental group T0. This suggests that a gap of at least 7 days should be left between bleaching enamel with 35% hydrogen peroxide and placing adhesive bonding agents and undertaking resin composite restoration work.
Resumo:
Materials with high photoluminescence (PL) intensity can potentially be used in optical and electronic devices. Although the PL properties of bismuth(III) oxide with a monoclinic crystal structure (α-Bi2O3) have been explored in the past few years, methods of increasing PL emission intensity and information relating PL emission to structural defects are scarce. This research evaluated the effect of a pressure-assisted heat treatment (PAHT) on the PL properties of α-Bi2O3 with a needlelike morphology, which was synthesized via a microwave-assisted hydrothermal (MAH) method. PAHT caused an angular increase between the [BiO6]-[BiO6] clusters of α-Bi2O3, resulting in a significant increase in the PL emission intensity. The Raman and XPS spectra also showed that the α-Bi2O3 PL emissions in the low-energy region (below ∼2.1 eV) are attributed to oxygen vacancies that form defect donor states. The experimental results are in good agreement with first-principles total-energy calculations that were carried out within periodic density functional theory (DFT).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm−3 to 2.6 × 1019 cm−3 . The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.
Resumo:
Purpose: Ti-Ta alloys have high potential for dental application due to a good balance between high strength and low modulus. Absence of primary anchoring may occur when dental implants are installed immediately after tooth extraction. Tranexamic acid (TEA) is used to reduce fibrin degradation and can prevent early blood clot breakdown. The aim of this study was to evaluate the biocompatibility of Ti-30Ta implants associated or not with tranexamic acid and installed with compromised primary stability. Methods and materials: Fabricated were 20 implants of titanium ASTM F67 (Grade 4) and 20 implants of Ti-30Ta alloy with dimensions of 2.1 mm × 2.8 mm Ø. They were divided (n = 10) into Group I (Ti machined), Group II (Ti machined/tranexamic acid), Group III (Ti-30Ta alloy) and Group IV (Ti-30Ta/tranexamic acid) and were implanted in tibia (defects with 2.5 mm × 3.2 mm Ø) of 40 male rats (250 g). The surgical sites were rinsed with 5% tranexamic acid solution in Groups II and IV. The animals were euthanized at 45 days postoperative. The pieces were processed in methyl methacrylate (Stevenel's blue/Alizarin red). The percentage of peri-implant tissue repair was analyzed via images obtained by an optical microscope coupled to a digital camera using Leica software and Adobe Photoshop QWin. Data were analyzed statistically with a significance level of 5%. Results: Histomorphometric results showed 97.16% of bone-implant contact for group IV, 89.78% of bone contact for group III, 70.89% for group II and 61.59% of bone contact for group I. The statistical analyses demonstrated significant differences (P < 0.05) among group I and other groups. Conclusion: The results suggest that (a) Ti-30Ta promoted an increase of bone healing and apposition around implant; (b) tranexamic acid favored the stabilization of blood clot and bone formation.
Resumo:
Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550°C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.
Resumo:
Titanium alloys are among the most important and frequently used class of biomaterials. In addition to biocompatibility, it is important that an implant material present satisfactory mechanical properties that allow long term use in the body. To improve such properties, different heat treatments are used, as well as doping with oxygen. The presence of interstitial oxygen in the crystal lattice causes deformation, increases the hardness, and causes modifications in anelasticity, thereby decreasing the elastic modulus. In this study, an alloy was prepared by arc melting precursor metals, heat and mechanically treated, and doped with oxygen, resulting in samples with different processing conditions. In each condition, the alloy was characterised in terms of amount of oxygen, X-ray diffraction, and optical microscopy. In addition, properties of the alloy, such as hardness and elastic modulus, were analysed.
Resumo:
Titanium alloys have excellent biocompatibility, and combined with their low elastic modulus, become more efficient when applied in orthopedic prostheses. Samples of Ti-15Mo-Zr and Ti-15Zr-Mo system alloys were prepared using an arc-melting furnace with argon atmosphere. The chemical quantitative analysis was performed using an optical emission spectrometer with inductively coupled plasma and thermal conductivity difference. The X-ray diffractograms, allied with optical microscopy, revealed the structure and microstructure of the samples. The mechanical analysis was evaluated by Vickers microhardness measurements. The structure and microstructure of alloys were sensitive to molybdenum and zirconium concentration, presenting α′, α″ and β phases. Molybdenum proved to have greater β-stabilizer action than zirconium. Microhardness was changed with addition of molybdenum and zirconium, having Ti-15Zr-10Mo (436 ± 2 HV) and Ti-15Mo-10Zr (378 ± 4 HV) the highest values in each system.
Resumo:
In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-beta-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans -> cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.
Resumo:
The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America
Resumo:
Rayleigh optical activities of small hydrogen-bonded methanol clusters containing two to five molecules are reported. For the methanol trimer, tetramer, and pentamer both cyclic and linear structures are considered. After the geometry optimizations, the dipole moments and the dipole polarizabilities (mean, interaction, and anisotropic components) are calculated using HF, MP2 and DFT (B3LYP, B3P86 and BH&HLYP) with aug-cc-pVDZ extended basis set. The polarizabilities are used to analyse the depolarization ratios and the Rayleigh scattering activities. The variations in the activity and in the depolarization for Rayleigh scattered radiation with the increase in the cluster size for both cyclic and linear structures are analysed.
Resumo:
In this report, we investigate the polarization effect (linear, elliptical and circular) on the two-photon absorption (2PA) properties of a chiral compound based in azoaromatic moieties using the femtosecond Z-scan technique with low repetition rate and low pulse energy. We observed a strong 2PA modulation between 800 nm and 960 nm as a function the polarization changes from linear through elliptical to circular. Such results were interpreted employing the sum-over-essential states approach, which allowed us to model the 2PA circular-linear dichroism effect and to identifier the overlapping of the excited electronic states responsible by the 2PA allowed band. (C) 2012 Optical Society of America
Resumo:
Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.