968 resultados para Onsager reaction field approximation
Resumo:
Efforts to identify genes other than HLA-B27 in AS have been driven by the strength of the evidence from genetic epidemiology studies indicating that HLA-B27, although a major gene in AS, is clearly not the only significant gene operating. This is the case for both genetic determinants of disease-susceptibility and phenotypic characteristics such as disease severity and associated disease features. In this chapter the genetic epidemiology of AS and the gene-mapping studies performed to date will be reviewed and the future direction of research in this field discussed.
Resumo:
In absolute terms, there have been improvements in social resources for all racial and ethnic groups in the United States. The rise in education levels among blacks and Hispanics, for instance, suggests a lessening of the gap between classes, beginning in the later part of the 1960’s (Kao & Thompson, 2003). Yet the divide in income and to a lesser extent education between peoples who differ in gender, skin color and ethnic origin continues and in many ways is greater now than ever (Danziger & Gottschalk, 1997); (Gottschalk, 1997). The psychological distance between those high and those low in social-economic status continues unabated and threatens to undermine the capacity of communities to foster the positive architecture of hope, optimism and equal opportunity that holds us together as a nation...
Resumo:
In stark contrast to its horticultural origins, modern genetics is an extremely technology-driven field. Almost all the major advances in the field over the past 20 years have followed technological developments that have permitted change in study designs. The development of PCR in the 1980s led to RFLP mapping of monogenic diseases. The development of fluorescent-tagged genotyping methods led to linkage mapping approaches for common diseases that dominated the 1990s. The development of microarray SNP genotyping has led to the genome-wide association study era of the new millennium. And now the development of next-generation sequencing technologies is about to open up a new era of gene-mapping, enabling many potential new study designs. This review aims to present the strengths and weaknesses of the current approaches, and present some new ideas about gene-mapping approaches that are likely to advance our knowledge of the genes involved in heritable bone traits such as bone mineral density (BMD) and fracture.
Resumo:
The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes.
Resumo:
The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.
Resumo:
β-Hydroxyperoxyl radicals are formed during atmospheric oxidation of unsaturated volatile organic compounds such as isoprene. They are intermediates in the combustion of alcohols. In these environments the unimolecular isomerization and decomposition of β-hydroxyperoxyl radicals may be of importance, either through chemical or thermal activation. We have used ion-trap mass spectrometry to generate the distonic charge-tagged β-hydroxyalkyl radical anion, ˙CH2C(OH)(CH3)CH2C(O)O−, and investigated its subsequent reaction with O2 in the gas phase under conditions that are devoid of complicating radical–radical reactions. Quantum chemical calculations and master equation/RRKM theory modeling are used to rationalize the results and discern a reaction mechanism. Reaction is found to proceed via initial hydrogen abstraction from the γ-methylene group and from the β-hydroxyl group, with both reaction channels eventually forming isobaric product ions due to loss of either ˙OH + HCHO or ˙OH + CO2. Isotope labeling studies confirm that a 1,5-hydrogen shift from the β-hydroxyl functionality results in a hydroperoxyalkoxyl radical intermediate that can undergo further unimolecular dissociations. Furthermore, this study confirms that the facile decomposition of β-hydroxyperoxyl radicals can yield ˙OH in the gas phase.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode
Resumo:
This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 °C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation
Resumo:
BACKGROUND Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. METHODS We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. RESULTS Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. CONCLUSION For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.
Resumo:
A strategy to tackle the synthesis of azoporphyrins with unsubstituted terminal meso positions was investigated. It comprised the combination of diaza-Diels–Alder (DADA) reaction of 1,3-dienes with dialkyl azodicarboxylates, decarboxylative hydrolysis of the bis(carbamates), palladium-catalyzed amination of bromoporphyrin precursors, and retro-DADA reactions to release the ultimate targets. The somewhat confused historical results on the DADA reactions of 1,3-cyclohexadiene were clarified, but the hydrolyses yielded extremely air-sensitive amines which decomposed completely in minutes via autooxidation and retro-DADA reaction. With anthracene or 2,3-dimethyl-1,3-butadiene as the diene, the synthesis of azoporphyrin was not achieved but three amino-substituted porphyrins were obtained in moderate yields under mild conditions. The X-ray crystal structures of several of the intermediates and the final aminoanthracene-porphyrin nickel(II) complex were determined.
Resumo:
Contamination of pesticides, which are applied to rice paddy fields, in river water has been a major problem in Japan for decades. A prolonged water holding period after pesticide application in paddy fields is expected to reduce the concentration of rice pesticides in river water. Therefore, a long monitoring campaign was conducted from 2004 to 2010 to measure the concentrations of pesticides in water samples collected from several points along the Chikugo River (Japan) including tributaries and the main stream to see if there was any reduction in the level of pesticide contamination after the extension of the water holding period (from 3–4 days to 7 days) was introduced in 2007 by the new water management regulation. No significant difference (p > 0.05) was found in pesticide concentrations between the periods before and after 2007 in all monitoring points, except in one tributary where the pesticide concentrations after 2007 were even higher than that of the previous period. A detailed study in one of the tributaries also revealed that the renovated infrastructure did not reduce the pesticide concentrations in the drainage canals. Neither the introduction of the new regulation nor the improved infrastructure had any significant effect on reducing the contamination of pesticides in water of the Chikugo River. It is probably because most farmers did not properly implement the new requirement of holding paddy water within the field for 7 days after the application of pesticides. Only tightening the regulation would not be sufficient and more actions should be taken to enforce/provide extension support for the new water management regulation in order to reduce the level of residual pesticides in river water in Japan.
Resumo:
We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10-10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10-9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10-14, OR = 1.51, 95% CI 1.35-1.68; rs4977756 combined P = 1.35 × 10-14, OR = 1.39, 95% CI 1.28-1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma. © 2011 Nature America, Inc. All rights reserved.
Resumo:
Recently, media 'scandals' have pervaded a number of Australian body contact sports, in particular rugby league, rugby union and Australian rules football. Utilising the theoretical framework of masculinities, this research interviews footballers to gauge their perceptions of this media attention and how it compares to their own perspectives regarding off-field violence. Drawing inspiration from James Messerschmidt's (2000) 'Nine Lives' study and R.W. Connell's (1995) theoretical masculinities framework, in-depth, semi-structured interviews—known as life histories—were conducted with 12 footballers. Twelve life histories were completed with four men from each of the three major Australian football codes, namely Australian rules football, rugby union and rugby league. The research explores linkages between masculinity, body contact sport and engagement (or lack thereof) in violence 'off field'.
Resumo:
We study, in two dimensions, the effect of misfit anisotropy on microstructural evolution during precipitation of an ordered beta phase from a disordered alpha matrix; these phases have, respectively, 2- and 6-fold rotation symmetries. Thus, precipitation produces three orientational variants of beta phase particles, and they have an anisotropic (and crystallographically equivalent) misfit strain with the matrix. The anisotropy in misfit is characterized using a parameter t = epsilon(yy)/epsilon(xx), where epsilon(xx) and epsilon(yy) are the principal components of the misfit strain tensor. Our phase field, simulations show that the morphology of beta phase particles is significantly influenced by 1, the level of misfit anisotropy. Particles are circular in systems with dilatational misfit (t = 1), elongated along the direction of lower principal misfit when 0 < t < 1 and elongated along the invariant direction when - 1 <= t <= 0. In the special case of a pure shear misfit strain (t = - 1), the microstructure exhibits star, wedge and checkerboard patterns; these microstructural features are in agreement with those in Ti-Al-Nb alloys.