959 resultados para Oil exploration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic survey is the most effective prospecting geophysical method during exploration and development of oil/gas. The structure and the lithology of the geological body become increasingly complex now. So it must assure that the seismic section own upper resolution if we need accurately describe the targets. High signal/noise ratio is the precondition of high-resolution. For the sake of improving signal/noise ratio, we put forward four methods for eliminating random noise on the basis of detailed analysis of the technique for noise elimination using prediction filtering in f-x-y domain. The four methods are put forward for settling different problems, which are in the technique for noise elimination using prediction filtering in f-x-y domain. For weak noise and large filters, the response of the noise to the filter is little. For strong noise and short filters, the response of the noise to the filter is important. For the response of the noise, the predicting operators are inaccurate. The inaccurate operators result in incorrect results. So we put forward the method using prediction filtering by inversion in f-x-y domain. The method makes the assumption that the seismic signal comprises predictable proportion and unpredictable proportion. The transcendental information about predicting operator is introduced in the function. The method eliminates the response of the noise to filtering operator, and assures that the filtering operators are accurate. The filtering results are effectively improved by the method. When the dip of the stratum is very complex, we generally divide the data into rectangular patches in order to obtain the predicting operators using prediction filtering in f-x-y domain. These patches usually need to have significant overlap in order to get a good result. The overlap causes that the data is repeatedly used. It effectively increases the size of the data. The computational cost increases with the size of the data. The computational efficiency is depressed. The predicting operators, which are obtained by general prediction filtering in f-x-y domain, can not describe the change of the dip when the dip of the stratum is very complex. It causes that the filtering results are aliased. And each patch is an independent problem. In order to settle these problems, we put forward the method for eliminating noise using space varying prediction filtering in f-x-y domain. The predicting operators accordingly change with space varying in this method. Therefore it eliminates the false event in the result. The transcendental information about predicting operator is introduced into the function. To obtain the predicting operators of each patch is no longer independent problem, but related problem. Thus it avoids that the data is repeatedly used, and improves computational efficiency. The random noise that is eliminated by prediction filtering in f-x-y domain is Gaussian noise. The general method can't effectively eliminate non-Gaussian noise. The prediction filtering method using lp norm (especially p=l) can effectively eliminate non-Gaussian noise in f-x-y domain. The method is described in this paper. Considering the dip of stratum can be accurately obtained, we put forward the method for eliminating noise using prediction filtering under the restriction of the dip in f-x-y domain. The method can effectively increase computational efficiency and improve the result. Through calculating in the theoretic model and applying it to the field data, it is proved that the four methods in this paper can effectively solve these different problems in the general method. Their practicability is very better. And the effect is very obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Corporation's science and technology project. Although it is difficult, it has important theoretical and practical value. The study was aimed to reveal inhomogeneity of two kinds of reservoirs of fan-shaped delta and braided river by using new theories, new methods and new technology about 3-D model building and reservoir knowledge repository throughout the world, and to build reservoir knowledge repository and 3-D geological model which would predict the type of sand body forming reason and distribution rule in order to improve exploration result in Qiuling oil fields. Multi-discipline theories such as petroleum structure geology, reservoir geology, petroleum geology, sequence geology, logging geology, geomathematics and so on are used as guide. The information of geology, seism, logging and production test is combined. Outcrop area and overlap area are combined. By making full use of computer, stable structure, reservoir geometric shape, spatial distribution and inhomogeneity of bed of interest are investigated, described and characterized. Petroleum pool 3-D static geological model of reservoir knowledge repository was built. Sand body distribution was predicted. It has guided oil development, lowed the investment and improved development benefits. Several results are achieved as follows: (1) Strata framework of Sanjianfang group in Qiuling oil field has been established. (2) Geometric shape, spatial distribution and evolve rule of two different forming reason's reservoir of fan-shaped delta and braided river of Sanjianfang group in Qiuling oil field are discussed. (3) The two kinds of reservoirs have lower pore and permeability and very strong inhomogeneity. (4) Reservoir knowledge repository of two different forming reasons has been built of Sanjianfang group, which includes 5 geological knowledge sublibrary. (5) 3-D geological model of two kinds of forming reason's reservoirs has been built. (6) That same sequence instruction a simulation and probability field were used to predict sand body of Sanjianfang group was put forward. Coincidence rate is high after production test. It shows this method has great popularity value. (7) A set of theories, methods and technologies of knowledge repository of two kinds of reservoir of braided river and fan-shaped delta and 3-D geological model building were finished. (8) A set of theories, methods and technologies of investigating, describing, characterizing and predicting two kinds of oil pool were developed. It gets noticeable economic benefit after exploration. Theory and method about extrusion basin are developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of petroleum exploration, subtle reservoir has become the main exploration object in Dongying Depression, which requires some new technologies and methods to further reveal the geological characteristics in step with the mature exploration stage. In this paper, on the references to the studies of petroleum system and multiple oil-gas accumulation belt with flexible maneuverability, and the application of systematic theory, the concept of reservoir assemblage is initially defined as "the association of active source rock(s) and hydrocarbon reservoir(s) that are genetically related, with the bridge of pathway system in an oil and gas bearing basin". Compared with the theories of petroleum system and multiple oil-gas accumulation belts, it emphasizes on the processes of petroleum migration and accumulation and the correlation among active source rock, trapped hydrocarbon and migration pathway, and has been confirmed to be more suitably applied to high maturely explored basin. In the first study of this paper, sequence stratigraphy and subtle analytical technology of source rock have been employed to find that two categories of source rock with their characteristic types of organic matter and substantial states occurred in Dongying Depression. The first category, consisting of the oil shales within the third-order sequences of lacustrine expanding system tracts in the upper interval of the fourth Member of Shahejie Formation and both in the middle and lower intervals of the third Member of Shahejie Formation, is featured with the highest abundance of total organic matter (TOC) and the strongest abilities of hydrocarbon generation and expulsion, which is classified into the standard of good hydrocarbon source rock. Exploration assessment confirmed that about 70-80% of hydrocarbon in Dongying Depression came from this set of source rock for which the low sedimentary rate and strong oxygen-free environment would play the key role during its generation. The second category, composed of organic matter of dark mudstone in high stand system tracts in the upper and middle intervals of the third Member of Shahejie Formation, has been characterized by low content of total organic matter which mostly dispersedly distributes, and formed in the pre-delta to delta front environments. In classification, it belongs to the ordinary standard of source rocks. In the second research part, through the studies of high frequency sequence stratigraphy, fault geometry and active history combining with geochemistry of fluid inclusion and nitrogen compound and simulation test of hydrocarbon migration and accumulation, the faults have been thought to be the principal conduits, and the sandy bodies and unconformities might played the complementary pathways for hydrocarbon migration and accumulation in Dongying Depression of the continental faulted basin. Therefore, the fault activities may mainly constrain on the development of hydrocarbon pathways in space and time. Even more, using homogenization temperatures of fluid inclusion in digenetic minerals, three critical moments for hydrocarbon accumulation have been determined as well in Dongying Depression, which happened during the late stage of Dongying Formation (Ed), the early stage of Guantao Formation (Nig) and the early stage of Minghuazhen Formation (Nim), respectively. Comparatively, the last stage is looked as the main forming-reservoir period, which has also been supported by the results of geochemical analysis and simulation experiments of hydrocarbon generation and expulsion. Clearly, the times of hydrocarbon migration and accumulation are consistent with those of the fault activities in Dongying Depression, which indicate that tectonic activities would control the forming-reservoir. A conceptual model of faulting-episodic expulsion coupled with episodic forming-reservoir has then been established in this study. In the third part of this paper, some focusing areas were selected for the fine descriptions of pathway distribution and forming-reservoir, which has given four types of reservoir assemblage in terms of the main pathway and its correlation with the reservoir and trap: (1) mainly consisted of sandy bodies; (2) mainly consisted of faults; (3) mainly consisted of unconformities; and (4) their complex with two or three types of pathways. This classified criteria has also been applied to access the risk of some prospected traps in Dongying Depression. Finally, through the application of reservoir assemblage integrated with pathway distribution to all the prospective targets in Dongying Depression, the new favorably hydrocarbon accumulated belts have been figured out, and more subtle reservoirs have also been found. For examples, during 2000 and 2002, in the mature exploration areas, such as Liangjialou and Shengtuo structural closures etc., newly proved reserves were 2274 * 104t, and forecasted oil reserves 5660-5860xl04t; and in the predicted favorable areas, newly additional controlled oil reserves was 3355xl04t. Besides those, many other favorable exploration areas need to be further appraised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Industry Corporation's key project. Although it is very difficult, it has important theoretical and practical value. Its targets is to make lithological petroleum pool exploration great breakthrough in Dongying sag, by applying advanced theories, the last-minute methods and technology in highly explored zones. By using synthetically multi- discipline theories, methods and technology such as petroleum geology, sedimentology, structure geology, rock mechanics, dynamics of petroleum pool formation, geochemistry, geophysics and so on, and by making full use of computer , the process of petroleum pool forming and distribution rules of lithological petroleum pools have been thoroughly investigated and analyzed in sharp-slope, gentle-slope as well as low-lying region of Dongying sag including dynamic and static. With the study of tectonic stress field, fluid potential field and pressure field, we revealed dynamics condition, distribution rule, control factors and petroleum forming mechanism of lithological pool, and established the forming mode of lithological pool of Dongying sag. The main conclusion as follow: Strata framework, structure framework and sedimentary system of Dongying sag have been established which were the basis of petroleum prediction. There are three kinds of oil source which were from Es4,Es3 and mixed type, also three petroleum forming phases which were the telophase of Dongying stage, Guantao stage and Minghuazhen group, which occur in different geological environment. By using of most advanced numerical modeling software, the space distribution and time evolve of stress field and fluid potential field have been revealed from Esl up to the present. The region with low earth stress and low fluid potential were enrichment region of lithological petroleum pool and fault-block pool. The dynamics mechanism of Lithological petroleum pool in Dongying sag was collocating seal box, abnormity pressure, index number of petroleum forming and static factors on time and space, which was the most important factor of controlling petroleum pool forming, distribution and enrichment. The multi phase active and evolve of seal and unseal about different order fault were main factors of controlling petroleum pool forming of Dongying sag, which have important value for predicting lithological petroleum pool. It is revealed the lithological petroleum pool forming mode that included respective character, forming mechanism and distribution rule in four structural belt, which was a base for lithological petroleum pool prediction. The theories, technology and methods of studying, description, characterize and prediction lithological petroleum pool were established, which have important popularization value. Several lithological pool have been predicted in stress transform, zone, abrupt slope zone, fractured surface changed zone, tosional stress growth zone and abnormity pressure zone with noticeable economic benefit after exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between tectonic activity and oil and gas migration and accumulation is one of the major subjects studied in petroleum geology and oil and gas exploration process. Oil and gas exploration practice and understandings thus obtained over a long term have indicated that tectonic activities within hydrocarbon bearing basins had important controlling effect on oil and gas migration and accumulation, but the influence of different hydrocarbon basins and tectonic activities on migration, accumulation and distribution of oil and gas differs to certain degree. Liaohe Depression is located in the northeast strip of Baohai Gulf Basin. The two major faults, Tanlu and Yilan-Yitong fault of Tanlu fault system, which played a significant controlling role on the forming and evolution of Cenozoic hydrocarbon basins in eastern China, pass along the east and west side of the Depression. The special structural location had made Liaohe Depression different from other depressions in the Basin in terms of tectonic evolution, depositional evolution, organic evolution, oil and gas migration and accumulation, and reservoir distribution. Major reasons resulting in these differences are tectonic activities and stress effect. Through analytical study of tectonic evolution history, .depositional history, hydrocarbon evolution history, and oil and gas accumulation history in Liaohe Depression, this paper systematically discusses the controlling effect of regional right-hand rotation strike-slip tectonic activity and stress effect on forming of major hydrocarbon bearing structures, major period of hydrocarbon expulsion from source rock, major direction of secondary oil and gas migration, and distribution of oil and gas accumulations since mid-late period of Oliocene, Paleogene. It has been concluded that major oil and gas bearing anticline structures within the Depression are reversal anticlines formed by right-hand rotation strike-slip shear compressional stress, main hydrocarbon expulsion period happened in the moving period of major right-hand rotation strike-slip tectonic activity, the direction of right-hand rotation strike-slip shear compressional stress was the main direction of secondary oil and gas migration, and the discharging zone of right-hand rotation strike-slip shear compressional stress was major accumulation zone of oil and gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis show you seven interpretation models of erosion of MAs1+2 in the west of prospect and eroded gully of middle and east, form the interpretation technique how to built up eroded gully of the Ordovician top, according of the practical demand of oil-gas exploration in the ShanGanNing basin, using seismic information, combining well logging and well drilling data, Carefully analyzing geologic deposition background and well logging data, through a great quantity forward and inversion for geologic model and combination geologic model with seismic section. Related to research of reservoir absorption in the ShanGanNing basin, it firstly introduces PRONY transformation multidimensional filter. It can simultaneously express relationship of frequency and absorption decay coefficient, better than FUSAIPU analysis method; PRONY filter have obtain the better effect in the gas field of ZhenChuanBao in the ShanBei area after adopting PRONY filtering method to predict reservoir absorption, by analyzing fixed well and prediction of non-well drilling. In the ShanGanNing basin, general seismic inversion method can produce evident different results or misunderstanding because wave impedance and lithology, physical property, gas property are not sole, especially while have little impedance contrast and even have contract direction; the author carefully analyzes multi-parameter inversion technique, add natural gamma ray and natural potential and other parameter combined making model inversion method according of theory of seismic inversion and applying reservoir velocity and wave impedance information at last, we get the more directly reservoir physical property parameter, judging reservoir physical property is more exact. In accordance with geologic, seismic feature of Shan basin, the thesis conclude Ordovician system top erosion interpretation technology with ChangQing character, and reservoir thickness prediction technique combining inversion technique with wave character analysis, Reservoir physical property that is mainly absorption factor analysis and multi-parameter inversion and oil-gas prediction technology. These technologies obtain the better result in the oil-gas field exploration and have formed comprehensive research method and technology series with ShanGanNing character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of types, even temperature, the character of age-old fluid and fluid pressure of the reservoir fluid-inclusion in the Upper Paleozoic of Ordos Basin , combining with the diagenesis and character of gas geochemistry, reservoir sequence, cause of the low pressure reservoir formation and formation environment have been studied, the following knows are acquired: Abundant fluid-conclusions have developed in sandstone reservoir in Upper Paleozoic of Ordos Basin,and its kinds is numerous , also taking place some changes such as shrinking rock, cracking, stretching after formation. According to formation cause, fluid inclusion is divided into two types:successive and nonsuccessive inclusion. Nonsuccessive inclusion is further divided into brine inclusion, containing salt crystal inclusion, gaseity hydrocarbon conclusion and liquid hydrocarbon conclusion and so on. The gaseity hydrocarbon conclusion distributes at all the Basin, the liquid hydrocarbon conclusion mainly distributes at the East of Basin, and its two kinds of fluorescence color: blue and buff reflects at least two periods of oil filling and oil source of the different maturity. The study of diagenesis has indicated that five periods of diagenesis correspond to five periods inclusion's growth.The first and second period conclusions mainly distribute at the increasing margin of quartz, little amount and low even temperature, containing little gaseity hydrocarbon conclusion; The third and fourth conclusions are very rich, and having multiplicity forms, gaseity hydrocarbon conclusion of different facies, distributing at the increasing margin and crevice of quartz, its even temperature is between 85℃and 135℃;The fifth inclusion is relatively few ,mainly distributing at vein quartz and calcite, and developing few gaseity hydrocarbon conclusion. The fluid in the inclusion is mainly NaCl brine:low and high salinity brine fluid(containing salt crystal).The former salinity is between 0.18% and 18.55%,and mainly centralized distributing at three sectongs: from 0% to 4%, from 6% to 8%, from 10% to 14%, expressing that the alternation of the underground fluid was not intense, the conservation condition was good in different periods. The trapping pressure of the gaseity hydrocarbon conclusion calculated by PVTsim(V10)simulation is between 21.39 MPa and 42.58MPa,the average is 28.99MPa,mainlydistributes at between 24 MPa and 34MPa,and having a character of gradually lower from early to late time. The pressure of SuLiGe and WuShenQi dropped quickly in early time, and YuLin, ShenMu-MIZhi gas area dropped slowly in early and quickly in late time, ha portrait the change of trapping pressure can be divided into three old-age pressure systems: TaiYuan-ShanXi formation, low ShiHeZi formation and high ShiHeZi-ShiQianFeng formation. In plane, the trapping pressure dropped lowly from south to north in main reservoir period, and this reflects the gas migrating direction in the geohistory period. The analysis of gas component and monnmer hydrocarbon isotope indicates that the gas in Upper Paleozoic of Ordos Basin is coal-seam gas. The gas C_1-C_4 rnonnmer hydrocarbon isotopes has distinct differences in different stratums of different areas, and forming YuLin, SuLiGe and ShenMu-MIZhi three different distributing types. To sum up, gas reservoir combination in Upper Paleozoic of Ordos Basin can be divided into three sets of combination of reservoir formation: endogenesis type, near source type and farther source type,and near source gas combinations of reservoir formation is the main gas exploration area for its high gas filling intensity, large reservoir size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bedding sequences, based on the results from others, have been constructed by geological researches. Furthermore, the reservoir, gas-bearing characteristics and reservoir-blanket association have been increasingly understudied by the geological and seismic studies as well as the log data. The deep dynamics for the formation and development of Shangdu basin resulted from complicated fault system and its continued action have been obtained. The studies on the reservoir condition reveal that the mantle-derived magmatism provided the materials for the CO_2 gas reservoir after Paleogene Period and the huge regional fault not only control the evolution of basin and sedimentary but also pay a role as a passage of the CO_2. The sandstone of river course formed in Paleogene System, with very good reservoir condition, are widely developed in the study area. The blanket with good condition is composed by the basalt in Hannuoba Formation and lake facies shale of Shangdou Formation. Local structures and good encirclement are resulted from the different sedimentary environment and later differential sagging. All statements above demonstrate that there is a very good pool-forming condition for the CO_2. In addition, the high abundance of H_2 recognized during drill exploration are also of significance.More than 30 inorganic CO_2 gas reservoirs have been determined during the exploration for the oil-bearing basins in the eastern China, which are developed along the two sides of Tanlu Fault or within it. In which the CO_2 gas reservoir in Shangdou basin is an inorganic gas reservoir far away from Tanlu Fault. Thus the determination of the CO_2 gas reservoir in Shangdou basin is significant for sciences due to the first exploration for the inorganic CO_2 gas reservoir in our country. The geophysical exploration carried on the CO_2 gas reservoir is benefited for the research of prospecting techniques of CO_2 reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic survey is the most effective prospecting geophysical method during exploration and development of oil/gas. The structure and the lithology of the geological body become increasingly complex now. So it must assure that the seismic section own upper resolution if we need accurately describe the targets. High signal/noise ratio is the precondition of high-resolution. As one important seismic data processing method, Stacking is an effective means to suppress the records noise. Broadening area of surface stacked is more important to enhance genuine reflection signals and suppressing unwanted energy in the form of coherent and random ambient noise. Common reflection surface stack is a macro-model independent seismic imaging method. Based on the similarity of CRP trace gathers in one coherent zone, CRS stack effectively improves S/N ratio by using more CMP trace gathers to stack. It is regarded as one important method of seismic data processing. Performing CRS stack depends on three attributes. However, the equation of CRS is invalid under condition of great offset. In this thesis, one method based on velocity model in depth domain is put forward. Ray tracing is used to determine the traveltime of CRP in one common reflection surface by the least squares method to regress the equation of CRS. Then we stack in the coherent seismic data set according to the traveltime, and get the zero offset section. In the end of flowchart of implementing CRS stack, one method using the dip angle to enhance the ratio of S/N is used. Application of the method on synthetic examples and field seismic records, the results of this method show an excellent performance of the algorithm both in accuracy and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbidity sandstone reservoirs have been an important field of hydrocarbon exploration and development in the basins all over the world, as well as in China. Lithologic pools are composed of turbidity sandstones and other sandstones are frequently found in the Jiyang Depression that is a Mesozoic-Cenozoic non-marine oil-bearing basin. The Dongying Sag lies in the sedimentary center of the basin. The subtle traps with turbidity reservoirs are generally difficult to be predicted and described by using current techniques. The studies on turbidity reservoirs plays thus an important theoretical and theoretical practical role in exploration and development in the Jiyang Depression. The attention is, in this thesis, focused on the petrologic properties and oil accumulating behaviors in lake turbidity sedimentary systems in the middle part of the third section of Shahejie Formation in the Dongying Sag, especially in Dongxin area, which lies on the central uplift of the Sag. The paper has disclosed the origin types of turbidity sandstones, distribution pattern and controlling factors of turbidity sandstones, and set up hydrocarbon accumulation patterns of the middle part of the third section of Shahejie Formation in Dongxin, based on nonmarine high resolution sequence stratigraphy, event sedimentology and new theories of hydrocarbon forming. By studying prediction method and technology of turbidity sandstone reservoirs, using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, the paper has forecast low permeability turbidity sandstone reservoirs and pointed out advantage exploration aims to progressive exploration and development. The paper has obtained mainly many productions and acknowledges as follows: 1.Turbidity sandstone reservoirs of the third section of Shahejie Formationin Dongying Sag are formed in such specifical geological background as rift and extension of basin. The inherited Dongying delta and transgression make up many turbidity distribution areas by overlaying and joining together. The hydrocarbon migrates from depression area to adjacent turbidity sandstone continuously. Accumulation area which is sufficient in oil is formed. 2.The paper has confirmed distinguishable sign of sequence boundary , established stratigraphic framework of Dongying Sag and realized isotime stratigraphic correlation. Es3 of Dongying delta is divided into eleven stages. Among them, the second period of the lower section in Es3, the sixth period of the middle section in Es3, the third period of the upper section in Es3 correspond to eleven sedimentary isotime surface in seismic profile, namely Es3 is classified into eleven Formations. 3.According to such the features of turbidity sandstone as deep in burial, small in area, strong in subtle property, overlaying and joining together and occurring in groups, management through fault and space variations of restriction quantum are realized and the forecast precision of turbidity sandstone by using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, based on the analysis of all kinds of interwell seismic inversion techniques. 4.According to the features of low permeable turbidity sandstone reservoirs, new method of log interpretation model is put forward. At the same time, distinguish technology of familiar low resistivity oil layer in the turbidity sandstone reservoirs is studied based on petrophysical laboratory work and "four properties" interrelationship between lithological physical Jogging and bearing hydrocarbon properties. Log interpretation model and reservoir index interpretation model of low resistivity oil layer are set up. So the log interpretation precision is improved. 5.The evolution law and its difference of the turbidity sandstone are embodies as follows: the source of sediments come from the south and east of the study area in the middle period of Es3. East source of sediments is pushed from west to east. However, the south source supply of sediments in the early and middle period of Es3 is in full, especially in Es3. subsequently, the supply is decreased gradually. Turbidity fan moves back toward the south and the size of fan is minished accordingly. The characteristic of turbidity sandstone in Dongying Sag is different in different structural positions. Dongxin in the middle-east of the central lift and Niuzhuang Sag He in Dongying delta front and prodelta deep lake subfacies. Although the turbidity sandstone of the two areas root in the Dongying delta sedimentary system, the sand body has different remarkably characteristic. 6.The sedimentary model of the turbiditys in study area have three types as follows: (1) collapse turbidity fan in respect of delta; (2) fault trench turbidity fan; (3) other types of microturbidity sandstone. Middle fan and outer fan, can be found mainly in sublacustrine fan. Middle fan includes braided channel microfacies, central microfacies and braided interchannel microfacies, which is main prospecting oil-bearing subfacies. The middle section of the third section of Shahejie Formation in study area (for example the central lift) can be divided into middle-lower and upper part. The middle-lower part is characteristic of turbidity fan. The upper part is sedimented mainly by delta-collapse fan. 7.The turbidity reservoirs of the middle part of the third section of Shahejie Formation in study area characterize by low maturity both in component and texture, strong in diagenesis and low in permeability. The reservoir can be classified into four types. Type III is the body of reservoir and comprises two types of H a and HI b. M a belongs to middle porosity - low permeability reservoir and distributes in the central lift. Hlb belongs to low porosity - low permeability and distributes in Haojia region. 8.A11 single sand body of lens turbidity reservoir of the middle part of the third section of Shahejie Formation in study area are surrounded by thick dark source rocks. The oil-water system is complex and behaves that every sandstone is single seal unit. The water body is 1/3-1-5 of the sand body. The edge water is not active. The gas exists in the top of reservoir in the form of mixed gas. For far-range turbidity fan with big scale channel, the area and volume of sand body is large and the gap is big in oil packing degree. There are lots of edge water and bottom water, and the latter increases rapidly during the course of development. 9.By exerting the modern hydrocarbon forming theories, the third section of Shahejie Formation in study area belongs to abnormally pressured fluid compartment. The lithological reservoir of the third section of Shahejie Formation is formed in the compartment. The reservoir-formed dynamic system belongs to lower self-source enclosed type. The result and the practice indicate that the form and accumulation of lithological oil reservoirs are controlled by the temperature and pressure of stratum, microfacies, thickness of sand body, fault and reservoir heterogeneity. 10. Based on studies above, the emphases focus on in south and north part of Dongying structure, west Dongxin region and south part Xinzhen structure in the application of production. The practice proves that the turbidity sandstone reservoirs in Ying 11 block and the fault-lithological reservoirs in Xin 133 block have been obtained significant breakthrough. The next target is still sandstone groups of the third section of Shahejie Formation in the bordering areas of Dongxin region for instance Xin 149 area, He 89 area, Ying 8 area etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To deal with some key problems in multi-component seismic exploration, some methods are introduced in this thesis based on reading amounts of papers about multi-component seismic theories and methods. First, to find a solution for the detection of the fracture density and orientation in igneous, carbonate and shale reservoirs, a large amount of which exist in domestic oil fields with low exploration and development degree, a new fast and slow shear waves separation method called Ratio Method based on S-wave splitting theory is discussed in this thesis, through which the anisotropy coefficient as well as fracture parameters such as density and azimuthal angle can be acquired. Another main point in this thesis involves the application of seismic velocity ratio (Vp/Vs) to predict the Hthological parameters of subsurface medium. To deal with the unfeasibility of velocity ratio calculation method based on time ratio due to the usually low single-noise ratio of S-wave seismic data acquired on land, a new method based on detailed velocity analysis is introduced. Third, pre-stack Kirchhoff integral migration is a new method developed in recent years, through which both S and P component seismic data as well as amplitude ratio of P/S waves can be acquired. In this thesis, the research on untilizing the P and S wave sections as well as amplitude ratio sections to interpret low-amplitude structures and lithological traps is carried out. The fast and slow shear wave separation method is then be applied respectively to detect the density and azimuthal angle of fractures in an igneous rock gas reservoir and the coal formation in a coal field. Two velocity ratio-calculating methods are applied respectively in the lithological prediction at the gas and coal field after summarizing a large amount of experimental results draw domestically and abroad. P and S wave sections as well as amplitude ratio sections are used to identify low-amplitude structures and lithological traps in the slope area of a oil-bearing sedimentary basin. The calculated data concerning fracture density and azimuthal angle through the introduced method matches well with the regional stress and actual drilling data. The predicted lithological data reflects the actual drilling data. Some of the low-amplitude and lithological traps determined by Kirchhoff migration method are verified by the actual drilling data. These results indicate that these methods are very meaningful when dealing with complex oil and gas reservoir, and can be applied in other areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.