778 resultados para Ocular palsy
Resumo:
Purpose: To provide a comprehensive overview of research examining the impact of astigmatism on clinical and functional measures of vision, the short and longer term adaptations to astigmatism that occur in the visual system, and the currently available clinical options for the management of patients with astigmatism. Recent findings: The presence of astigmatism can lead to substantial reductions in visual performance in a variety of clinical vision measures and functional visual tasks. Recent evidence demonstrates that astigmatic blur results in short-term adaptations in the visual system that appear to reduce the perceived impact of astigmatism on vision. In the longer term, uncorrected astigmatism in childhood can also significantly impact on visual development, resulting in amblyopia. Astigmatism is also associated with the development of spherical refractive errors. Although the clinical correction of small magnitudes of astigmatism is relatively straightforward, the precise, reliable correction of astigmatism (particularly high astigmatism) can be challenging. A wide variety of refractive corrections are now available for the patient with astigmatism, including spectacle, contact lens and surgical options. Conclusion: Astigmatism is one of the most common refractive errors managed in clinical ophthalmic practice. The significant visual and functional impacts of astigmatism emphasise the importance of its reliable clinical management. With continued improvements in ocular measurement techniques and developments in a range of different refractive correction technologies, the future promises the potential for more precise and comprehensive correction options for astigmatic patients.
Resumo:
Purpose To examine macular retinal thickness and retinal layer thickness with spectral domain optical coherence tomography (OCT) in a population of children with normal ocular health and minimal refractive errors. Methods High resolution macular OCT scans from 196 children aged from 4 to 12 years (mean age 8 ± 2 years) were analysed to determine total retinal thickness and the thickness of 6 different retinal layers across the central 5 mm of the posterior pole. Automated segmentation with manual correction was used to derive retinal thickness values. Results The mean total retinal thickness in the central 1 mm foveal zone was 255 ± 16 μm, and this increased significantly with age (mean increase of 1.8 microns per year) in childhood (p<0.001). Age-related increases in thickness of some retinal layers were also observed, with changes of highest statistical significance found in the outer retinal layers in the central foveal region (p<0.01). Significant topographical variations in thickness of each of the retinal layers were also observed (p<0.001). Conclusions Small magnitude, statistically significant increases in total retinal thickness and retinal layer thickness occur from early childhood to adolescence. The most prominent changes appear to occur in the outer retinal layers of the central fovea.
Resumo:
Purpose People with diabetes have accelerated age-related biometric ocular changes compared with people without diabetes. We determined the effect of Type 1 diabetes on amplitude of accommodation. Method There were 43 participants (33 ± 8 years) with type 1 diabetes and 32 (34 ± 8 years) age-balanced participants without diabetes. There was no significant difference in the mean equivalent refractive error and visual acuity between the two groups. Amplitude of accommodation was measured using two techniques: objective — by determining the accommodative response to a stimulus in a COAS-HD wavefront aberrometer (Wavefront Sciences), and subjective — with a Badal hand optometer (Rodenstock). The influences of age and diabetes duration (in years) on amplitude of accommodation were analyzed using multiple regression analysis. Results Across both groups, objective amplitude was less than subjective amplitude by 1.4 ± 1.2 D. People with diabetes had lower objective (2.7 ± 1.6 D) and subjective (4.0 ± 1.7 D) amplitudes than people without diabetes (objective 4.1 ± 2.1 D, subjective 5.6 ± 2.1 D). For objective amplitude and the whole group, the duration of diabetes contributed 57% of the variation as did age. For the objective amplitude and only the diabetes group this was 78%. For subjective amplitude, the corresponding proportions were 68% and 103%. Conclusions Both objective and subjective techniques showed lowered amplitude of accommodation in participants with type 1 diabetes when compared with age-matched controls. The loss correlated strongly with duration of diabetes. The results suggest that individuals with diabetes will experience presbyopia earlier in life than people without diabetes, possibly due to metabolic changes in the lens.