970 resultados para Normalized production function
Resumo:
This study aimed to investigate the immunological mechanisms involved in the gender distinct incidence of paracoccidioidomycosis (pcm), an endemic systemic mycosis in Latin America, which is at least 10 times more frequent in men than in women. Then, we compared the immune response of male and female mice to Paracoccidioides brasiliensis infection, as well as the influence in the gender differences exerted by paracoccin, a P. brasiliensis component with carbohydrate recognition property. High production of Th1 cytokines and T-bet expression have been detected in the paracoccin stimulated cultures of spleen cells from infected female mice. In contrast, in similar experimental conditions, cells from infected males produced higher levels of the Th2 cytokines and expressed GATA-3. Macrophages from male and female mice when stimulated with paracoccin displayed similar phagocytic capability, while fungicidal activity was two times more efficiently performed by macrophages from female mice, a fact that was associated with 50% higher levels of nitric oxide production. In order to evaluate the role of sexual hormones in the observed gender distinction, we have utilized mice that have been submitted to gonadectomy followed by inverse hormonal reconstitution. Spleen cells derived from castrated males reconstituted with estradiol have produced higher levels of IFN-gamma (1291+/-15 pg/mL) and lower levels of IL-10 (494+/-38 pg/mL), than normal male in response to paracoccin stimulus. In contrast, spleen cells from castrated female mice that had been treated with testosterone produced more IL-10 (1284+/-36 pg/mL) and less IFN-gamma (587614 pg/mL) than cells from normal female. In conclusion, our results reveal that the sexual hormones had a profound effect on the biology of immune cells, and estradiol favours protective responses to P. brasiliensis infection. In addition, fungal components, such as paracoccin, may provide additional support to the gender dimorphic immunity that marks P. brasiliensis infection.
Resumo:
Background: The establishment of an in vitro production (IVP) of embryo in swine allows the generation of embryos with the same quality as in vivo produced embryos with less costs and time. In order to achieve successful fertilization under normal circumstances in vivo, mammalian spermatozoa must first undergo capacitation and then acrosome reaction. The purpose of this study was compared the efficacious of IP/CFDA fluorescence and Coomassie Blue G (CB) staining to detect capacitated sperm cells in refrigerated and fresh semen. Morever, it was investigated the efficacious of caffeine and chondroitin sulphate to promote in vitro sperm capacitation and in vitro embryo produced (IVP) of swine embryos. Materials, Methods & Results: A sperm-rich fraction from ejaculate was obtained using the gloved-hand method and the gel-free fraction was separated using sterile gauze. The semen was diluted in BTS at a final concentration of 1.5 x 10(8) cells/mL. The sperm suspension was incubated for 2 h at 25 degrees C, refrigerated and maintained for 1 h at 15-18 degrees C (refrigerated group) or used immediately (fresh group). Sperm capacitation was assessed by IP/CFDA fluorescence and CB staining for both fresh and refrigerated semen. For PI/CFDA evaluation, a final solution containing 1.7 mM formaldehyde, 7.3 mM PI and 20 mM CFDA in 950 mu L saline was prepared. In the dark, 40 mu L PI/CFDA final solution was added to 10 mu L semen and after 8 min, slides were analyzed on epifluorescence microscopy. For CB evaluation, sperm cells were fixed in 4% paraformaldehyde for 10 min and centrifuged twice at 320 x g in ammonium acetate pH 9 for 8 min. A smear was made and stained with 2.75 mg/mL CB in solution containing 12.5% methanol, 25% glacial acetic acid and 62.5% water, for 2 min. The smear was washed in running water, air dried and sealed with Permount (R), diluted 2:1 in xilol to avoid staining oxidation. Our results showed that refrigeration did not affect sperm capacitation and comparing staining methods, the PI/CFDA combination was more efficient to detect capacitated sperm, when compared to CB staining. In experiment 2, we evaluated the effect of different incubation time (1 - 5 h) with chondroitin sulfate and caffeine on sperm capacitation. For in vitro fertilization, oocytes were obtained from slaughterhouse ovaries. Oocytes with a thick and intact cumulus oophurus layer and cytoplasm with homogenous granules were selected for in vitro maturation for 44 h. According to the results of experiment 2, it was used for in vitro fertilization refrigerated semen was capacitated with 50 mu g/mL chondroitin sulfate for 2 h or capacitated with 5 mu g/mL caffeine for 3 h. Six hours after insemination, cumulus oophorus cells were mechanically removed and oocytes were washed and incubated in microdrops of culture medium. Embryo development after fertilization with sperm capacitated with caffeine or chondroitin sulfate was evaluated on days 3, 5 and 7 of culture. No differences were observed in days 3 or 5 of in vitro culture. However, it was observed an increase on blastocyst rate on Day 7 of culture when caffeine was used as the capacitor agent. Discussion: Molecular basis of sperm capacitation is still poor understood. Sperm capacitation can occur in vitro spontaneously in defined media without addition of biological fluids. We observed that sperm capacitation increased as incubation period enlarged and it was observed using Coomassie blue G and PI/CFDA for fresh semen and for refrigerated semen. It can be concluded that the cooling of semen did not change their pattern of sperm capacitation and this is best assessed by IP/CFDA than by CB. In addition to the use of caffeine in sperm capacitation produces more blastocysts than the chondroitin sulfate after in vitro fertilization.
Resumo:
Background: Recent studies have supported the concept of ""fetal programming"" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods: Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results: We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions: In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.
Resumo:
The objective of the present study was to estimate (co)variance components for length of productive life (LPL) and some alternative reproductive traits of 6-year-old Nellore cattle. The data set contained 57,410 records for age at first calving from Nellore females and was edited to remove animal records with uncertain paternity and cows with just one piece of calving information. Only animals with age at first calving ranging from 23 to 48 months and calving intervals between 11 and 24 months were kept for analysis. LPL and life production ( LP) were used to describe productive life. LPL was defined as the number of months a cow was kept in the herd until she was 6 years old, given that she was alive at first calving and LP was defined as total number of calves in that time. Four traits were used to describe reproductive traits: two breeding efficiencies on original scale were estimated using Wilcox and Tomar functions (BEW and BET, respectively), and two breeding efficiencies transformed (ASBEW and ASBET, respectively), using the function [arcsine (square root (BEi/100))]. Estimates of heritability for measures of LPL and LP were low and ranged from 0.04 to 0.05. Estimates of heritability for breeding efficiencies on original and transformed scales oscillated from 0.18 to 0.32. Estimates of genetic correlations ranged from -0.57 to 0.79 for LPL and other traits and from 0.28 to 0.63 for LP and other traits.
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
Cell cycle synchronization by serum starvation (SS) induces apoptosis in somatic cells. This side effect of SS is hypothesized to negatively affect the outcome of somatic cell nuclear transfer (SCNT). We determined whether apoptotic fibroblasts affect SCNT yields. Serum-starved, adult, bovine fibroblasts were stained with annexin V-FITC/propidium iodide to allow apoptosis detection by flow cytometry. Positive and negative cells sorted by fluorescence activated cell sorting (FACS) and an unsorted control group were used as nuclear donors for SCNT. Reconstructed embryos were cultured in vitro and transferred to synchronized recipients. Apoptosis had no effect on fusion and cleavage rates; however, it resulted in reductions in blastocyst production and quality measured by apoptotic index. However, reconstructed embryos with apoptotic cells resulted in pregnancy rates similar to that of the control on day 30, and generated one live female calf. In conclusion, we showed that apoptotic cells present in serum-starved cultures negatively affect embryo production after SCNT without compromising full-term development. Further studies will evaluate the ability of the oocyte to reprogram cells in specific phases of apoptosis.
Resumo:
Queen, male and worker production was studied during one year in three Plebeia remota colonies from Atlantic Rainforest in Cunha, Sao Paulo State, and two from a subtropical Araucaria forest in Prudentopolis, Parana State. All the colonies were kept in Sao Paulo city during our study. Plebeia remota has reproductive diapause during autumn and winter, which makes its biology of special interest. Brood production begins before spring, renewing the colony cycle. We sampled brood combs monthly in these five colonies. The number of cells in each comb varied significantly with time of the year; the smallest brood combs appear to be a consequence of reduced food availability. However, worker, queen and male frequencies did not differ significantly in time, and this presumably is due to the fact that they all are necessary for the growth, maintenance and reproduction of the colony. Although some molecular, morphological and behavioral differences have been detected in several studies comparing populations from Cunha and from Prudentopolis, we did not find significant differences between the colonies from these two localities in number of brood cells and worker, queen and male production.
Resumo:
Background: Endothelial cells are of great interest for cell therapy and tissue engineering. Understanding the heterogeneity among cell lines originating from different sources and culture protocols may allow more standardized material to be obtained. In a recent paper, we showed that adrenalectomy interferes with the expression of membrane adhesion molecules on endothelial cells maintained in culture for 16 to 18 days. In addition, the pineal hormone, melatonin, reduces the adhesion of neutrophils to post-capillary veins in rats. Here, we evaluated whether the reactivity of cultured endothelial cells maintained for more than two weeks in culture is inversely correlated to plasma melatonin concentration. Methodology/Principal Findings: The nocturnal levels of melatonin were manipulated by treating rats with LPS. Nocturnal plasma melatonin, significantly reduced two hours after LPS treatment, returned to control levels after six hours. Endothelial cells obtained from animals that had lower nocturnal melatonin levels significantly express enhanced adhesion molecules and iNOS, and have more leukocytes adhered than cells from animals that had normal nocturnal levels of melatonin (naive or injected with vehicle). Endothelial cells from animals sacrificed two hours after a simultaneous injection of LPS and melatonin present similar phenotype and function than those obtained fromcontrol animals. Analyzing together all the data, taking into account the plasma melatonin concentration versus the expression of adhesion molecules or iNOS we detected a significant inverse correlation. Conclusions/Significance: Our data strongly suggest that the plasma melatonin level primes endothelial cells ""in vivo,"" indicating that the state of the donor animal is translated to cells in culture and therefore, should be considered for establishing cell banks in ideal conditions.
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.
Resumo:
Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.
Resumo:
Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.
Resumo:
The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.
Resumo:
The NK1.1 molecule participates in NK, NKT, and T-cell activation, contributing to IFN-gamma production and cytotoxicity. To characterize the early immune response to Plasmodium chabaudi AS, spleen NK1.1(+) and NK1.1(-) T cells were compared in acutely infected C57BL/6 mice. The first parasitemia peak in C57BL/6 mice correlated with increase in CD4(+)NK1.1(+)TCR-alpha beta(+), CD8(+)NK1.1(+)TCR-alpha beta(+), and CD4(+)NK1.1(-)TCR-alpha beta(+) cell numbers per spleen, where a higher increment was observed for NK1.1(+) T cells compared to NK1.1(-) T cells. According to the ability to recognize the CD1d-alpha-GalCer tetramer, CD4(+)NK1.1(+) cells in 7-day infected mice were not predominantly invariant NKT cells. At that time, nearly all NK1.1(+) T cells and around 30% of NK1.1(-) T cells showed an experienced/activated (CD44(HI)CD69(HI)CD122(HI)) cell phenotype, with high expression of Fas and PD-L1 correlating with their low proliferative capacity. Moreover, whereas IFN-gamma production by CD4(+)NK1.1(+) cells peaked at day 4 p.i., the IFN-gamma response of CD4(+)NK1.1(-) cells continued to increase at day 5 of infection. We also observed, at day 7 p.i., 2-fold higher percentages of perforin(+) cells in CD8(+)NK1.1(+) cells compared to CD8(+)NK1.1(-) cells. These results indicate that spleen NK1.1(+) and NK1.1(-) T cells respond to acute P. chabaudi malaria with different kinetics in terms of activation, proliferation, and IFN-gamma production.
Resumo:
The 60kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10. RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+)IL-17(+), CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+)IFN-gamma(+) and CD4(+)IL-17(+) T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.