942 resultados para Noisy Quantum Channels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibrations of H3O2- and D3O2- are investigated using diffusion Monte Carlo (DMC) and vibrational configuration-interaction approaches, as implemented in the program MULTIMODE. These studies use the potential surface recently developed by Huang [ J. Am. Chem. Soc. 126, 5042 (2004)]. The focus of this work is on the vibrational ground state and fundamentals which occur between 100 and 3700 cm(-1). In most cases, excellent agreement is obtained between the fundamental frequencies calculated by the two approaches. This serves to demonstrate the power of both methods for treating this very anharmonic system. Based on the results of the MULTIMODE and DMC treatments, the extent and nature of the couplings in H3O2- and D3O2- are investigated. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvothermal synthesis affords access to the first truly three-dimensional anti mony-sufide framework which contains one-dimensional circular channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)(2), (D2O)(2), (H2O)(3), and (D2O)(3) using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang , J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diacetylformoin (3,4-dihydroxy-3-hexene-2,5-dione) has 16 tautomers, many with several possible conformations and all have been geometry optimised using quantum mechanics at the HF/6-31+G* level. Eleven structures have been identified with energies within 10 kcal mol(-1) of the minimum energy structure. Of these eight are acyclic and three cyclic. Calculations of NMR spectra have clarified the identity of the acyclic and cyclic structures found experimentally. The mechanism for cyclisation has been investigated and transition states obtained. The lowest energy reaction path requires the loss and gain of a proton during cyclisation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation consumer level interactive services require reliable and constant communication for both mobile and static users. The Digital Video Broadcasting ( DVB) group has exploited the rapidly increasing satellite technology for the provision of interactive services and launched a standard called Digital Video Broadcast through Return Channel Satellite (DYB-RCS). DVB-RCS relies on DVB-Satellite (DVB-S) for the provision of forward channel. The Digital Signal processing (DSP) implemented in the satellite channel adapter block of these standards use powerful channel coding and modulation techniques. The investigation is concentrated towards the Forward Error Correction (FEC) of the satellite channel adapter block, which will help in determining, how the technology copes with the varying channel conditions and user requirements(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two quantum-kinetic models of ultrafast electron transport in quantum wires are derived from the generalized electron-phonon Wigner equation. The various assumptions and approximations allowing one to find closed equations for the reduced electron Wigner function are discussed with an emphasis on their physical relevance. The models correspond to the Levinson and Barker-Ferry equations, now generalized to account for a space-dependent evolution. They are applied to study the quantum effects in the dynamics of an initial packet of highly nonequilibrium carriers, locally generated in the wire. The properties of the two model equations are compared and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow water equations in open channels. A linearised problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C2H4, in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF6) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1))=(-10.55 +/- 0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH2 + C2H4, showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH2 and SiCl2 with C2H4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with oxirane, oxetane, and tetrahydrofuran (THF). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at four or five temperatures in the range 294-605 K. All three reactions showed pressure dependences characteristic of third-body-assisted association reactions with, surprisingly, SiH2 + oxirane showing the least and SiH2 + THF showing the most pressure dependence. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equations where the error limits are single standard deviations: log(k(oxirane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.03 +/- 0.07) + (5.70 +/- 0.51) kJ mol(-1)/RT In 10 log(k(oxetane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.17 +/- 0.11) + (9.04 +/- 0.78) kJ mol(-1)/RT In 10 log(k(THF)(infinity)/cm(3) molecule(-1) s(-1)) = (-10.59 +/- 0.10) + (5.76 +/- 0.65) kJ mol(-1)/RT In 10 Binding-energy values of 77, 97, and 92 kJ mol(-1) have been obtained for the donor-acceptor complexes of SiH2 with oxirane, oxetane, and THF, respectively, by means of quantum chemical (ab initio) calculations carried Out at the G3 level. The use of these values to model the pressure dependences of these reactions, via RRKM theory, provided a good fit only in the case of SiH2 + THF. The lack of fit in the other two cases is attributed to further reaction pathways for the association complexes of SiH2 with oxirane and oxetane. The finding of ethene as a product of the SiH2 + oxirane reaction supports a pathway leading to H2Si=O + C2H4 predicted by the theoretical calculations of Apeloig and Sklenak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reactions of silylene, SiH2, and dideutero-silylene, SiD2, generated by laser. ash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH3C CCH3. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(-1)/RTln10 log(k(D)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTln10 Additionally, pressure-dependent rate coefficients for the reaction of SiH2 with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC4H8 reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH2C(CH3)=C(CH3)-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH3CH=C(CH3)SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H - D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the length of the code word. However, time-selective fading channels do exist, and in such case conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. As a sequel to the authors' previous papers on this subject, this paper aims to eliminate the error floor of the H(i)-coded O-STBC system (i = 3 and 4) by employing the techniques of: 1) zero forcing (ZF) and 2) parallel interference cancellation (PIC). It is. shown that for an H(i)-coded system the PIC is a much better choice than the ZF in terms of both performance and computational complexity. Compared with the, conventional H(i) detector, the PIC detector incurs a moderately higher computational complexity, but this can well be justified by the enormous improvement.