914 resultados para New materials
Resumo:
The technology of "explosion in fractures" is one of new synthetic engineering methods used in low permeability reservoirs. The most important problem arose from the technology is to assess the deflagration propagation capability of milky explosives in rock fractures. In order to investigate detailed this problem in the laboratory, an experimental setup was designed and developed in which different conditions can be simulated. The experimental setup mainly includes two parts. One is the experimental part and the other is the measurement part. In the experimental setup, the narrow slots with different width can be simulated; meanwhile, different initial pressures and initial temperatures can be loaded on the explosives inside the narrow slots. The initial pressure range is from 0-60 MPa, and the initial temperatures range is from room temperature to 100 V. The temperature and the velocity of deflagration wave can be measured; meanwhile the corresponding pressure in the narrow slot is also measured. In the end, some typical measurement results are briefly presented and discussed.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
By using the bifunctional ligand, 8-hydroxyquinoline-functionalized organosilane (Q-Si), the new mesoporous material Q-MCM-41 covalently bonded with 8-hydroxyquinoline was synthesized. Through the ligand exchange reaction, the new near-infrared (NIR) luminescent mesoporous LnQ(3)-MCM-41 (Ln = Er, Nd, Yb) materials were prepared by linking the lanthanide quinolinate complexes to the ordered mesoporous Q-MCM-41 material. The LnQ(3)-MCM-41 materials were characterized by powder X-ray diffraction and N-2 adsorption/desorption, and they all show the characteristic mesoporous structure of MCM-41 with highly uniform pore size distributions.
Resumo:
Oxide ceramics with high sintering-resistance above 1473 K have very important applications in thermal barrier coatings (TBCs), catalytic combustion and high-temperature structural materials. Lanthanum zirconate (La2Zr2O7, LZ) is an attractive TBC material which has higher sintering-resistance than yttria stabilized zirconia (YSZ), and this property could be further improved by the proper addition of ceria.
Resumo:
Two new silica-based organic-inorganic hybrid materials (B104SGs and O104SGs) doped with a binary mixture of imidazolium and phosphonium ionic liquids have been synthesized and used as sorbents in batch system for rare earths (RE) separation. Imidazolium ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate (C(4)mim(+)PF(6)(-)) or 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)(-)) acted as porogens to prepare porous materials and additives to stabilize extractant within silica gel.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A beta-diketone ligand 4,4,5,5,5-pentafluoro-1-(2-naphthyl)-1,3-butanedione (Hpfnp), which contains a pentafluoroalkyl chain, was synthesized as the main sensitizer for synthesizing new near-infrared (NIR) luminescent Ln(pfnp)(3)phen (phen = 1,10-phenanthroline) (Ln = Er, Nd, Yb, Sm) complexes. At the same time, a series of lanthanide complexes covalently bonded to xerogels by the ligand 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) were synthesized in situ via a sol-gel process. [The obtained materials are denoted as xerogel-bonded Ln complexes (Ln = Er, Nd, Yb, Sm).] The single crystal structures of the Ln(pfnp) 3phen complexes were determined.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials.
Resumo:
La2Zr2O7 (LZ) and La-2(Zr0.7Ce0.3)(2)O-7 (LZ7C3) as novel candidate materials for thermal barrier coatings (TBCs) were prepared by electron beam-physical vapor deposition (EB-PVD). The adhesive strength of the as-deposited LZ and LZ7C3 coatings were evaluated by transverse scratch test. Meanwhile, the factors affecting the critical load value were also investigated. The critical load value of LZ7C3 coating is larger than that of LZ coating, whereas both values of these two coatings are lower than that of the traditional coating material, i.e. 8 wt% yttria stabilized zirconia (8YSZ). The micro-cracks formed in the scratch channel can partially release the stress in the coating and then enhance the adhesive strength of the coating. The width of the scratch channel and the surface spallation after transverse scratch test are effective factors to evaluate the adhesive strength of LZ and LZ7C3 coatings.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
A new pyrophosphate long-lasting phosphor with composition of Ca1.96P2O7:0.02Eu(2+), 0.02Y(3+) is synthesized via the high-temperature solid-state reaction method. Its properties are systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. The phosphor emits blue light that is related to the characteristic emission of Eu2+ due to 5d-4f transitions. For the optimized sample, bright blue long-lasting phosphorescence (LLP) could be observed by naked eyes even 6 h after the excitation source is removed. The TL spectra show that the doping of Y3+ ions greatly enhanced intensity of 335 K peak and created new TL peak at about 373 K that is also responsible for the blue LLP. Based on our study, Y3+ ions are suggested to act as electron traps to improve the performance of the blue phosphorescence of Eu2+ such as intensity and persistent time.
Resumo:
Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).