939 resultados para Network Simulator 3
Resumo:
Present world's realities, so deeply interconnected technified and hypercomplex, can only be understood by means of an interdisciplinary and systemic approach.
Resumo:
In this work, we introduce the Object Kinetic Monte Carlo (OKMC) simulator MMonCa and simulate the defect evolution in three different materials. We start by explaining the theory of OKMC and showing some details of how such theory is implemented by creating generic structures and algorithms in the objects that we want to simulate. Then we successfully reproduce simulated results for defect evolution in iron, silicon and tungsten using our simulator and compare with available experimental data and similar simulations. The comparisons validate MMonCa showing that it is powerful and flexible enough to be customized and used to study the damage evolution of defects in a wide range of solid materials.
Resumo:
A mobile Ad Hoc network (MANET) is a collection of wireless mobile nodes that can dynamically configure a network without a fixed infrastructure or central administration. This makes it ideal for emergency and rescue scenarios, where sharing information is essential and should occur as soon as possible. This article discusses which of the routing strategies for mobile MANETs: proactive, reactive or hierarchical, has a better performance in such scenarios. By selecting a real urban area for the emergency and rescue scenario, we calculated the density of nodes and the mobility model needed for the validation study of AODV, DSDV and CBRP in the routing model. The NS2 simulator has been used for our study. We also show that the hierarchical routing strategies are better suited for this type of scenarios.
Resumo:
The deployment of home-based smart health services requires effective and reliable systems for personal and environmental data management. ooperation between Home Area Networks (HAN) and Body Area Networks (BAN) can provide smart systems with ad hoc reasoning information to support health care. This paper details the implementation of an architecture that integrates BAN, HAN and intelligent agents to manage physiological and environmental data to proactively detect risk situations at the digital home. The system monitors dynamic situations and timely adjusts its behavior to detect user risks concerning to health. Thus, this work provides a reasoning framework to infer appropriate solutions in cases of health risk episodes. Proposed smart health monitoring approach integrates complex reasoning according to home environment, user profile and physiological parameters defined by a scalable ontology. As a result, health care demands can be detected to activate adequate internal mechanisms and report public health services for requested actions.
Resumo:
In order to improve the body of knowledge about brain injury impairment is essential to develop image database with different types of injuries. This paper proposes a new methodology to model three types of brain injury: stroke, tumor and traumatic brain injury; and implements a system to navigate among simulated MRI studies. These studies can be used on research studies, to validate new processing methods and as an educational tool, to show different types of brain injury and how they affect to neuroanatomic structures.
Resumo:
One of the main outputs of the project is a collaborative platform which integrates a myriad of research and learning resources. This article presents the first prototype of this platform: the AFRICA BUILD Portal (ABP 1.0). The ABP is a Web 2.0 platform which facilitates the access, in a collaborative manner, to these resources. Through a usable web interface, the ABP has been designed to avoid, as much as possible, the connectivity problems of African institutions. In this paper, we suggest that the access to complex systems does not imply slow response rates, and that their development model guides the project to a natural technological transfer, adaptation and user acceptance. Finally, this platform aims to motivate research attitudes during the learning process and stimulate user?s collaborations.
Resumo:
An integrated approach composed of a random utility-based multiregional input-output model and a road transport network model was developed for evaluating the application of a fee to heavy-goods vehicles (HGVs) in Spain. For this purpose, a distance-based charge scenario (in euros per vehicle kilometer) for HGVs was evaluated for a selected motorway network in Spain. Although the aim of this charging policy was to increase the efficiency of transport, the approach strongly identified direct and indirect impacts on the regional economy. Estimates of the magnitude and extent of indirect effects on aggregated macroeconomic indicators (employment and gross domestic product) are provided. The macroeconomic effects of the charging policy were found to be positive for some regions and negative for other regions.
Resumo:
A heterogeneous network, mainly based on nodes that use harvested energy to self-energize is presented and its use demonstrated. The network, mostly kinetically powered, has been used for the localization of herds in grazing areas under extreme climate conditions. The network consists of secondary and primary nodes. The former, powered by a kinetic generator, take advantage of animal movements to broadcast a unique identifier. The latter are battery-powered and gather secondarynode transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. Because a limited human interaction is desirable, the aim of this network is to reduce the battery count of the system.
Resumo:
Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.
Resumo:
By 2050 it is estimated that the number of worldwide Alzheimer?s disease (AD) patients will quadruple from the current number of 36 million people. To date, no single test, prior to postmortem examination, can confirm that a person suffers from AD. Therefore, there is a strong need for accurate and sensitive tools for the early diagnoses of AD. The complex etiology and multiple pathogenesis of AD call for a system-level understanding of the currently available biomarkers and the study of new biomarkers via network-based modeling of heterogeneous data types. In this review, we summarize recent research on the study of AD as a connectivity syndrome. We argue that a network-based approach in biomarker discovery will provide key insights to fully understand the network degeneration hypothesis (disease starts in specific network areas and progressively spreads to connected areas of the initial loci-networks) with a potential impact for early diagnosis and disease-modifying treatments. We introduce a new framework for the quantitative study of biomarkers that can help shorten the transition between academic research and clinical diagnosis in AD.
Resumo:
Purpose – The purpose of this paper is to present a simulation‐based evaluation method for the comparison of different organizational forms and software support levels in the field of supply chain management (SCM). Design/methodology/approach – Apart from widely known logistic performance indicators, the discrete event simulation model considers explicitly coordination cost as stemming from iterative administration procedures. Findings - The method is applied to an exemplary supply chain configuration considering various parameter settings. Curiously, additional coordination cost does not always result in improved logistic performance. Influence factor variations lead to different organizational recommendations. The results confirm the high importance of (up to now) disregarded dimensions when evaluating SCM concepts and IT tools. Research limitations/implications – The model is based on simplified product and network structures. Future research shall include more complex, real world configurations. Practical implications – The developed method is designed for the identification of improvement potential when SCM software is employed. Coordination schemes based only on ERP systems are valid alternatives in industrial practice because significant investment IT can be avoided. Therefore, the evaluation of these coordination procedures, in particular the cost due to iterations, is of high managerial interest and the method provides a comprehensive tool for strategic IT decision making. Originality/value – Reviewed literature is mostly focused on the benefits of SCM software implementations. However, ERP system based supply chain coordination is still widespread industrial practice but associated coordination cost has not been addressed by researchers.
Resumo:
Applications based on Wireless Sensor Networks for Internet of Things scenarios are on the rise. The multiple possibilities they offer have spread towards previously hard to imagine fields, like e-health or human physiological monitoring. An application has been developed for its usage in scenarios where data collection is applied to smart spaces, aiming at its usage in fire fighting and sports. This application has been tested in a gymnasium with real, non-simulated nodes and devices. A Graphic User Interface has been implemented to suggest a series of exercises to improve a sportsman/woman s condition, depending on the context and their profile. This system can be adapted to a wide variety of e-health applications with minimum changes, and the user will interact using different devices, like smart phones, smart watches and/or tablets.
Resumo:
Environmental monitoring has become a key aspect in food production over the last few years. Due to their low cost, low power consumption and flexibility, Wireless Sensor Networks (WSNs) have turned up as a very convenient tool to be used in these environments where no intrusion is a must. In this work, a WSN application in a food factory is presented. The paper gives an overview of the system set up, covering from the initial study of the parameters and sensors, to the hardware-software design and development needed for the final tests in the factory facilities.
Resumo:
Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives.