904 resultados para Natural resource economics
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Worcester, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1885, and the edition date is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Yarmouth, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886-87, the edition date is September, 1893 and this map has a reprint date of 1942. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Providence, Rhode Island quadrangle which includes areas in the state of Massachusetts. The survey dates (ground condition) of the original paper map are 1885 and 1887, the edition date is February, 1894 and this map has a reprint date of October, 1911. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Webster, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886-87, the edition date is July, 1892 and this map has a reprint date of 1943. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Springfield, Massachusetts quadrangle. The survey dates (ground condition) of the original paper map are 1886 and 1887 and the edition date is 1889. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Sheffield, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1884-1885, the edition date is October, 1897 and this map has a reprint date of March, 1908. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Sandisfield, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Salem, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886, the edition date is October, 1893 and this map has a reprint date of December, 1897. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Provincetown, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, the edition date is July, 1889 and this map has a reprint date of January, 1900. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Taunton, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1885, the edition date is September, 1893 and this map has a reprint date of 1940. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
Costs and environmental impacts are key elements in forest logistics and they must be integrated in forest decision-making. The evaluation of transportation fuel costs and carbon emissions depend on spatial and non-spatial data but in many cases the former type of data are dicult to obtain. On the other hand, the availability of software tools to evaluate transportation fuel consumption as well as costs and emissions of carbon dioxide is limited. We developed a software tool that combines two empirically validated models of truck transportation using Digital Elevation Model (DEM) data and an open spatial data tool, specically OpenStreetMap©. The tool generates tabular data and spatial outputs (maps) with information regarding fuel consumption, cost and CO2 emissions for four types of trucks. It also generates maps of the distribution of transport performance indicators (relation between beeline and real road distances). These outputs can be easily included in forest decision-making support systems. Finally, in this work we applied the tool in a particular case of forest logistics in north-eastern Portugal
Resumo:
Tese de doutoramento, Geologia (Hidrogeologia), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
In light of the growing international competition among states and globally operating companies for limited natural resources, export restrictions on raw materials have become a popular means for governments to strive for various goals, including industrial development, natural resource conservation and environmental protection. For instance, China as a major supplier of many raw materials has been using its powerful position to both economic and political ends. The European Union (EU), alongside economic heavyweights such as the US, Japan and Mexico, launched two high-profile cases against such export restrictions by China at the WTO in 2009 and 2012. Against this background, this paper analyses the EU’s motivations in the initiation of trade disputes on export restrictions at WTO, particularly focusing on the two cases with China. It argues that the EU's WTO complaints against export restrictions on raw materials are to a large extent motivated by its economic and systemic interests rather than political interests. The EU is more likely to launch a WTO complaint, the stronger the potential and actual impact on its economy, the more ambiguous the WTO rules and the stronger the internal or external lobbying by member states or companies. This argumentation is based on the analysis of pertinent factors such as the economic impact, the ambiguity of WTO law on export restrictions and the pressure by individual member states on the EU as well as the role of joint complaints at the WTO and political considerations influencing the EU’s decision-making process.
Resumo:
The Southern Caucasus and Central Asia are priority areas for the foreign policy of the Russian Federation. Russia mainly sees its influence in both regions as an important factor determining its international stature, and as a precondition for reinforcing its position as a world power. The Caucasus and Central Asia are also important for Russia from the points of view of economy, especially because of those area's natural resource wealth, and security, as both regions generate serious potential threats to the Russian Federation, including Islamic fundamentalism, terrorism, the drugs trade and illegal migration.
Resumo:
Addressing high and volatile natural resource prices, uncertain supply prospects, reindustrialization attempts and environmental damages related to resource use, resource efficiency has evolved into a highly debated proposal among academia, policy makers, firms and international financial institutions (IFIs). In 2011, the European Union (EU) declared resource efficiency as one of its seven flagship initiatives in its Europe 2020 strategy. This paper contributes to the discussions by assessing its key initiative, the Roadmap to a Resource Efficient Europe (EC 2011 571), following two streams of evaluation. In a first step, resource efficiency is linked to two theoretical frameworks regarding sustainability, (i) the sustainability triangle (consisting of economic, social and ecological dimensions) and (ii) balanced sustainability (combining weak and strong sustainability). Subsequently, both sustainability frameworks are used to assess to which degree the Roadmap follows the concept of sustainability. It can be concluded that it partially respects the sustainability triangle as well as balanced sustainability, primarily lacking a social dimension. In a second step, following Steger and Bleischwitz (2009), the impact of resource efficiency on competitiveness as advocated in the Roadmap is empirically evaluated. Using an Arellano–Bond dynamic panel data model reveals no robust impact of resource efficiency on competiveness in the EU between 2004 and 2009 – a puzzling result. Further empirical research and enhanced data availability are needed to better understand the impacts of resource efficiency on competitiveness on the macroeconomic, microeconomic and industry level. In that regard, strengthening the methodologies of resource indicators seem essential. Last but certainly not least, political will is required to achieve the transition of the EU-economy into a resource efficient future.