956 resultados para NSR CATALYSTS
Resumo:
Rare earth exchanged Na–Y zeolites, H-mordenite, K-10 montmorillonite clay and amorphous silica-alumina were effectively employed for the continuous synthesis of nitriles. Dehydration of benzaldoxime and 4-methoxybenzaldoxime were carried out on these catalysts at 473 K. Benzonitrile (dehydration product) was obtained in near quantitative yield with benzaldoxime whereas; 4-methoxybenzaldoxime produces both Beckmann rearrangement (4-methoxyphenylformamide) as well as dehydration products (4-methoxy benzonitrile) in quantitative yields. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream (TOS) studies show decline in the activity of the catalysts due to neutralization of acid sites by the basic reactant and product molecules and water formed during the dehydration of aldoximes.
Resumo:
Rice husk silica was utilized as the promoter of ceria for preparing supported vanadia catalysts. Effect of vanadium content was investigated with 2–10 wt.% V2O5 loading over the support. Structural characterization of the catalysts was done by various techniques like energy dispersive X-ray (EDX), X-ray diffraction (XRD), BET surface area, thermal analysis (TGA/DTA), FT-infrared spectroscopy (FT-IR), UV–vis diffused reflectance spectroscopy (DR UV–vis), electron paramagnetic spectroscopy (EPR) and solid state magnetic resonance spectroscopies (29Si and 51V MASNMR). Catalytic activity was studied towards liquid-phase oxidation of benzene. Surface area of ceria enhanced upon rice husk silica promotion, thus makes dispersion of the active sites of vanadia easier. Highly dispersed vanadia was found for low V2O5 loading and formation of cerium orthovanadate (CeVO4) occurs as the loading increases. Spectroscopic investigation clearly confirms the formation of CeVO4 phase at higher loadings of V2O5. The oxidation activity increases with vanadia loading up to 8 wt.% V2O5, and further increase reduces the conversion rate. Selective formation of phenol can be attributed to the presence of highly dispersed active sites of vanadia over the support.
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
The electron-donor properties of Sm2O3 activated at 300, 500, and 800°C are reported from studies on the adsorption of electron acceptors of various electron affinities (electron affinity values in eV are given in parentheses): 7,7,8,8-tetracyanoquino-dimethane (2.84), 2,3,5,6-tetrachloro-1,4-benzoquinone (2.40), p-dinitrobenzene (1.77), and m-dinitrobenzene (1.26) in acetonitrile and 1,4-dioxane. The extent of electron transfer during the adsorption was determined from magnetic measurements. The acid-base properties of Sm2O3 at different activation temperatures are reported using a set of Hammett indicators. Electron donor-acceptor interactions at interfaces are important in elucidating the adhesion forces.
Resumo:
Spinel systems with the composition of Cu 1−x Zn x Cr 2 O 4 [x = 0 CCr, x = 0.25 CZCr-1, x = 0.5 CZCr-2, x = 0.75 CZCr-3 and x = 1 ZCr] were prepared by homogeneous co-precipitation method and were characterized by X-ray diffraction (XRD) and FT-IR spectroscopy. Elemental analysis was done by EDX, and surface area measurements by the BET method. The redox behavior of these catalysts in cyclohexane oxidation at 243 K using TBHP as oxidant was examined. Cyclohexanone was the major product over all catalysts with some cyclohexanol. 69.2% selectivity to cyclohexanol and cyclohexanone at 23% conversion of cyclohexane was realized over zinc chromite spinels in 10 h.
Resumo:
Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.
Resumo:
In this paper, a novel application of solid acid catalysts in the Beckmann rearrangement of E,E-cinnamaldoxime in the synthesis of an important heterocyclic compound; isoquinoline is reported. E,E-Cinnamaldoxime under ambient reaction conditions on zeolite catalysts underwent Beckmann rearrangement to produce isoquinoline in yields of ca. 86–95%. Cinnamonitrile and cinnamaldehyde were formed as by-products. LaH-Y zeolite produces maximum amount of the desired product (yield 95.6%). However, the catalysts are susceptible for deactivation due to the basic nature of the reactants and products, which neutralize the active sites. H-Y zeolite is more susceptible (22% deactivation in 10 h) for deactivation compared to the cerium-exchanged counterpart (18% deactivation in 10 h). Thus, the optimal protocol allows isoquinoline to be synthesised in excellent yields through the Beckmann rearrangement of cinnamaldoxime. The reaction is simple, effective, does not involve any other additives, and environmentally benign.
Resumo:
Titania, sulfated titania and chromium loaded sulfated titania were prepared by sol–gel method and characterized using different technique. Phenol is nitrated regioselectively by nitric acid using chromium loaded sulfated titania catalysts. A remarkable ortho selectivity is observed in solid state nitration to yield exclusively ortho-nitrophenol. Compared to the conventional process, phenol nitration over solid acid catalyst is a clean and environment friendly process. Catalytic activity well correlates with the Brönsted acid sites of these catalysts.
Resumo:
Cyclohexanol decomposition activity of supported vanadia catalysts is ascribed to the high surface area, total acidity and interaction between supported vanadia and the amorphous support. Among the supported catalysts, the effect of vanadia over various wt% V2O5 (2–10) loading indicates that the catalyst comprising of 6 wt% V2O5 exhibits higher acidity and decomposition activity. Structural characterization of the catalysts has been done by techniques like energy dispersive X-ray analysis, X-ray diffraction and BET surface area. Acidity of the catalysts has been measured by temperature programmed desorption using ammonia as a probe molecule and the results have been correlated with the activity of catalysts.
Resumo:
Vanadia/ceria catalysts (2–10 wt% of V2O5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements, FT-IR spectroscopy and nuclear magnetic spectral analysis (51V MASNMR). XRD and 51V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO4 phase at higher V2O5 loading. The catalytic activity of catalysts was conducted in liquid phase oxidation of ethylbenzene with H2O2 as oxidant. The oxidation activity is increased with loading up to 8 wt% V2O5 and then decreased with further increase in V2O5 content to 10 wt%. Different vanadia species evidenced by various techniques were found to be selective towards ethylbenzene oxidation. The CeVO4 formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.
Resumo:
Catalysis is a mature field with extensive practical applications in today's society.indeed,the catalysis of petroleum refining,fine chemical synthesis and emission control demands the production of catalysts in bulk quantities.Future improvement of these well established processes is likely to be incremental.On the other hand,the continuous demand for new products will require additional novel and innovative processes.The need for pollution abatement and prevention also imposes new demands on catalysis, and new processes are periodically advanced for the control of emission of gases as well as for remediation processes such as the cleaning of underground waters. The number of problems where catalysis can have a big impact is constantly growing.In general,science stimulated by the technology has enriched the field of catalysis in a way that has had broad and lasting value.The thesis"Transition metal and rare earth metal modified sol-gel titania: a versatile catalyst for organic transformations" accounts the preparation and characterization studies of both transition metals and rare earth metals modified sol-gel titania and its applications in industrially useful organic reactions.
Resumo:
The prime intension of the present work was a synthetic investigation of the preparation, surface properties and catalytic activity of some transition metal substituted copper chromite catalysts. Homogeneous co-precipitation method is employed for the preparation of catalysts. Since the knowledge about the structure and composition of the surface is critical in explaining the reactivity and selectivity of a solid catalyst. a systematic investigation of the physico-chemical properties of the prepared systems was carried out. The catalytic activity of these systems has also been measured in several oxidation reactions of industrial as well as environmental relevance. The thesis is dedicated to several aspects of chromite spinels giving emphasis to its preparation, characterization and catalytic performance towards oxidation reactions.
Resumo:
The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.
Resumo:
Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involves catalysis.Solid acid catalysts are appealing since the nature of acid sites is known and their chemical behavior in acid catalyzed reactions can be rationalized by means of existing theories and models. Mixed oxides crystallizing in spinel structure are of special interest because the spinel lattice imparts extra stability to the catalyst under various reaction conditions so that theses systems have sustained activities for longer periods. The thesis entitled" Catalysis By Ferrites And Cobaltites For The Alkylation And Oxidation Of Organic Compounds " presents the preparation ,characterization ,and activity studies of the prepared spinels were modified by incorporating other ions and by changing the stoichiometry.The prepared spinels exhibiting better catalytic activity towards the studied reactions with good product selectivity.Acid-base properties and cation distribution of the spinels were found to control the catalytic activity.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology