972 resultados para NP-hardness
Resumo:
Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)
Resumo:
Two stages have been observed in micro-indentation experiment of a soft film on a hard substrate. In the first stage, the hardness of the thin film decreases with increasing depth of indentation when indentation is shallow; and in the second stage, the hardness of the film increases with increasing depth of indentation when the indenter tip approaches the hard substrate. In this paper, the new strain gradient theory is used to analyze the micro-indentation behavior of a soft film on a hard substrate. Meanwhile, the classic plastic theory is also applied to investigating the problem. Comparing two theoretical results with the experiment data, one can find that the strain gradient theory can describe the experiment data at both the shallow and deep indentation depths quite well, while the classic theory can't explain the experiment results.
Resumo:
Experiments were conducted on copper subjected to High Pressure Torsion to investigate the evolution of microstructure and microhardness with shear strain, gamma. Observations have been carried out in the longitudinal section for a proper demonstration of the structure morphology. An elongated dislocation cell/subgrain structure was observed at relatively low strain level. With increasing strain, the elongated subgrains transformed into elongated grains and finally into equiaxed grains with high angle grain boundaries. Measurements showed the hardness increases with increasing gamma then tends to saturations when gamma >5. The variation tendency of microhardness with gamma can be simulated by Voce-type equation.
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
《固体力学进展及应用:庆贺李敏华院士90华诞文集》收录了近代固体力学基础理论及其应用领域的重要科技成果和最新进展。作者是在同体力学领域工作多年的资深研究员,他们来自各行各业,有丰富的科研与丁作经验。他们提供的论文在相当程度上反映当前同体力学的发展现状与成就,并能看出发展趋势,对未来研究的课题选择有参考价值。《固体力学进展及应用:庆贺李敏华院士90华诞文集》还收集了李敏华院士的珍贵照片和纪念李敏华院士90华诞的庆贺和回忆文章,具有重要的史料价值。
目录
Resumo:
Village tanks are put to a wide range of uses by the rural communities that depend on them for their survival. As the primacy of irrigation has decreased under these tanks due to a variety of climatic and economic reasons there is a need to reevaluate their use for other productive functions. The research presented in this paper is part of a programme investigating the potential to improve the management of living aquatic resources in order to bring benefits to the most marginal groups identified in upper watershed areas. Based on an improved typology of seasonal tanks, the seasonal changes and dynamics of various water quality parameters indicative of nutrient status and fisheries carrying capacity are compared over a period of one year. Indicators of Net (Primary) Productivity (NP): Rates of Dissolved Oxygen (DO) change, Total Suspended Solids (TSS): Total Suspended Volatile solids (TVSS) ratios are the parameters of principle interest. Based on these results a comparative analysis is made on two classes of ‘seasonal’ and ‘semi-seasonal’ tanks. Results indicate a broad correlation in each of these parameters with seasonal trends in tank hydrology. Highest productivity levels are associated with periods of declining water storage, whilst the lowest levels are associated with the periods of maximum water storage shortly after the NW monsoon. This variation is primarily attributed to dilution effects associated with depth and storage area. During the yala period, encroachment of the surface layer by several species of aquatic macrophyte also has progressively negative impacts on productivity. The most seasonal tanks show wider extremes in seasonal nutrient dynamics, overall, with less favourable conditions than the ‘semi-seasonal’ tanks. Never the less all the tanks can be considered as being highly productive with NP levels comparable to fertilised pond systems for much of the year. This indicates that nutrient status is not likely to be amongst the most important constraints to enhancing fish production. Other potential management improvements based on these results are discussed. [PDF contains 19 pages]
Resumo:
Changes in sensory and instrumental quality parameter sand in thawing drip, cooking drip and total drip loss of frozen stored Baltic cod fillets (Gadus morhua) at different storage temperatures were investigated. Cod fillets stored at –20 °C and –30 °C exhibited the lowest drip losses and obtained the highest sensory scores. Drip losses were found to be highest in cod fillets stored at –10°C and in double frozen fillets stored at –20 °C. These two experiments also gave the lowest sensory scores. The texture parameters increased during storage parallel with storage time. The waterbinding capacity was lowest at –10 °C and almost constant at –30 °C. There is a good correlation between the sensory scores for “tough” and the instrumental texture measurement for hardness and chewiness.
Resumo:
Instrumental investigations of texture have been performed using texture profile analysis. The following textural parameters have been assessed: hardness, gumminess, chewiness, springiness, cohesiveness and adhesiveness. The fillets of both species have been prepared from deep frozen headed and gutted raw material without fins after frozen storage of 0, 23 and 34 weeks, respectively. Deep freezing of fishes has been performed on board immediately after hauling or after 6 day’s storage in ice. Before texture measurement the raw material has been thawed and the measurement was carriedout on both thawed and microwave-heated fillets. In general, it can be concluded that both fish species are comparable in their texture parameters. The hardness of heated dab has been slightly higher comparing with that one of plaice. All other texture parameters showed a fairly good conformity between both species. While the hardness of dab increased during heating, it was decreasing in plaice. This was the only one significant difference between both fishes during heating. Adhesiveness as well as cohesiveness increased remarkably during heating. Changes effected by ice storage were only slight. Frozen storage, in contrast, caused a significant decrease of adhesiveness measured after heating the fillets of both species.
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.
Resumo:
The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.
Resumo:
The environmental impact of agro-chemicals for fish production was extensively reviewed. The positive contribution of agro- chemicals and the devastating effect on aquaculture was x-rayed to alert users to this obvious environmental problem. Lime and fertilizers are commonly used in fish farming to increase pH of pond soil and water and to increase alkalinity and hardness, reduce humic acid content and to initiate primary and secondary productivity. Devastating effect of lime on environment is likely to be minimal. In the case of fertilizers, over utilization of this agro-chemical could impair water quality as phytoplankton bloom become excessive which consequently raises BOD. The use of Therapeutants in aquaculture was discovered to be more popular in Europe and North America than in the tropics (Africa). Commonly used therapeutants include antibiotics and antimicrobials. For fish pathology chemicals like formalin, potassium permanganate, Dipterex and malachite green are widely in use. Effluent from farms where these chemicals are commonly in use can distort the aquatic ecosystem. The changes in water quality, aquatic community structure and productivity caused by intensive aquaculture are typical of the impacts of pollution from a wide variety of sources like sewage, agricultural run-off and effluent discharges from industry
Resumo:
River Kubanni, a major tributary of River Galma, receives both organic and inorganic wastes through run-offs and seepage from residential and agricultural areas of Tundun-Wada, Zaria. Water and phytoplankton samples were collected once a month from three stations on a stretch of the river, for eight months (February, 1994-0ctober, 1994). The physico-chemical parameters and phytoplankton composition were determined and correlated to one another. The distribution and composition of phytoplankton species are affected by variations through fluctuations in environmental variables such as temperature, velocity, transparency, pH, dissolved Oxygen, total alkalinity, total hardness, electrical conductivity and total dissolved matter. Highest dissolved oxygen concentration in February coincided with the minimum water temperature due to the cool harmattan winds. Low alkalinity resulted in low phytoplankton productivity while a rise in total dissolved matter resulted in increase in electrical conductivity and high phytoplankton productivity. The presence of Oscillatoria sp and Euglena sp in station 2 and 3 are indicative of organic pollution in these stations. However, the river stretch is suitable for fish production with respect to water hardness and pH