972 resultados para NICKEL HYDROXIDE
Resumo:
Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.
Resumo:
This thesis reports the work performed in the optimization of deposition parameters of Multi – Walled Carbon Nanotubes (MWCNT) targeting the development of a Field Effect Transistors (FET) on paper substrates. The CNTs were dispersed in a water solution with sodium dodecyl sulphate (SDS) through ultrasonication, ultrasonic bath and a centrifugation to remove the supernatant and have a homogeneous solution. Several deposition tests were performed using different types of CNTs, dis-persants, papers substrates and deposition techniques, such as spray coating and inkjet printing. The characterization of CNTs was made by Scanning Electron Microscopy (SEM) and Hall Effect. The most suitable CNT coatings able to be used as semiconductor in FETs were deposited by spray coat-ing on a paper substrate with hydrophilic nanoporous surface (FS2) at 100 ºC, 4 bar, 10 cm height, 5 second of deposition time and 90 seconds of drying between steps (4 layers of CNTs were deposited). Planar electrolyte gated FETs were produced with these layers using gold-nickel gate, source and drain electrodes. Despite the small current modulation (Ion/Ioff ratio of 1.8) one of these devices have p-type conduction with a field effect mobility of 1.07 cm2/V.s.
Resumo:
In recent years there has been a growing interest in developing news solutions for more ecologic and efficient construction, including natural, renewable and local materials, thus contributing in the search for more efficient, economic and environmentally friendly construction. Several authors have assessed the possibility of using various agricultural sub products or wastes, as part of the effort of the scientific community to find alternative and more ecologic construction materials. Corn cob is an agricultural waste from a very important worldwide crop. Natural glues are made from natural materials, non-mineral, that can be used as such or after some modifications to achieve the behaviour and performance required. Two examples of these natural glues are casein and wheat flour-based glues that were used in the present study. Boards with different compositions were manufactured, having as variables the type of glue, the dimension of the corn cob particles and the features of the pressing process. The tests boards were characterized with physical and mechanical tests, such as thermal conductivity (λ) with a ISOMET 2104 and 60 mm diameter contact probe, density (ρ) based on EN 1602:2013, surface hardness (SH) with a PCE Shore A durometer, surface resistance (SR) with a PROCEQ PT pendular sclerometer, bending behaviour (σ) based on EN 12089:2013, compression behaviour (σ10) based on EN 826:2013 and resilience (R) based on EN 1094-1:2008, with a Zwick Rowell bending equipment with 2 kN and 50 kN load cells (Fig. 1), dynamic modulus of elasticity (Ed) with a Zeus Resonance Meter equipment (Fig. 5) based on NP EN 14146:2006 and water vapour permeability (δ) based on EN 12086:2013. The various boards produced were characterized according to the tests and the ones with the best results were C8_c8 (casein glue, grain size 2,38-4,76 mm, cold pressing for 8 hours), C8_c4 (casein glue, grain size 2,38-4,76 mm, cold pressing for 4 hours), F8_h0.5 (wheat flour glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours), FEV8_h0.5 (wheat flour, egg white and vinegar glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours) and FEVH68_c4 (wheat flour, egg white, vinegar and 6 g of sodium hydroxide glue, grain size 2,38-4,76 mm, cold pressing for 4 hours). Taking into account the various boards produced and respective test results the type of glue and the pressure and pressing time are very important factors which strongly influence the final product. The results obtained confirmed the initial hypotheses that these boards have potential as a thermal and, eventually, acoustic insulation material, to use as coating or intermediate layer on walls, floors or false ceilings. This type of board has a high mechanical resistance when compared with traditional insulating materials.The integrity of these boards seems to be maintained even in higher humidity environments. However, due to biological susceptibility and sensitivity to water, they would be more adequate for application in dry interior conditions.
Resumo:
In the context of this dissertation several studies were developed resulting in submission and publication “Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones” to Journal of Cultural Heritage. (http://dx.doi.org/10.101 /j.culher.2014.10.004)
Resumo:
This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.
Resumo:
Tese de Doutoramento Engenharia Mecânica
Resumo:
Dissertação de mestrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.
Resumo:
We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N1 1 1 2(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] by cyclic voltammetry and controlled-potential electrolysis. The results show that the reaction leads to the formation of the expected cyclic compounds, which are important intermediates in the synthesis of natural products with possible biological activities.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Dissertação de mestrado integrado em Materials Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil