865 resultados para NANOCOMPOSITE SPHERES
Resumo:
President Cardoso delivered this address at the First Regional Conference in Follow-up to the World Summit for Social Development, held in Sao Paulo from 6 to 9 April 1997. On that occasion President Cardoso reviewed the issues examined at the World Summit, with special emphasis on poverty and the search for an environmentally sound, democratic form of development that will lead to a greater degree of social equity. Within this context, he discussed the relationship between economic and social factors, devoting particular attention to State reform, education, competitiveness and job creation. He also outlined the situation in Brazil with regard to economic development, education and health services, the neeed for agrarian reform based on the principle of equity, and respect for human rights. In concluding his statement, he stressed the need to overcome the traditional division between community and society and between the public and private spheres. To that end, he called for a re-examination of ethical considerations, not as an empty discussion of morality but rather as an effective means of motivating action for change.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Yttrium manganite (YMnO3) is a multiferroic material, which means that it exhibits both ferromagnetic and ferroelectric properties, so making it interesting for a variety of technological applications. In this work, single-phase YMnO3 was prepared for the first time by mechanochemical synthesis in a planetary ball mill. The YMnO3 was formed directly from the highly activated constituent oxides, Y 2O3 and Mn2O3, after 60 min of milling time. During prolonged milling, the growth of the particles occurred. The cumulative energy introduced into the system during milling for 60 min was 86 kJ/g. The X-ray powder-diffraction analysis indicates that the as-prepared samples crystallize with an orthorhombic (Pnma) YMnO3 structure. The morphology and chemical composition of the powder were investigated by SEM and FESEM. The magnetic properties of the obtained YMnO3 powders were found to change as a function of the milling time in a manner consistent with the variation in the nanocomposite microstructure. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Includes bibliography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A YSZ@Al2O3 nanocomposite was obtained by Al 2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core-shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface-interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface-interface defect states. © 2013 This journal isThe Royal Society of Chemistry.
Resumo:
This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.
Resumo:
The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.
Resumo:
Currently, there has been an increasing demand for operational and trustworthy digital data transmission and storage systems. This demand has been augmented by the appearance of large-scale, high-speed data networks for the exchange, processing and storage of digital information in the different spheres. In this paper, we explore a way to achieve this goal. For given positive integers n,r, we establish that corresponding to a binary cyclic code C0[n,n-r], there is a binary cyclic code C[(n+1)3k-1,(n+1)3k-1-3kr], where k is a nonnegative integer, which plays a role in enhancing code rate and error correction capability. In the given scheme, the new code C is in fact responsible to carry data transmitted by C0. Consequently, a codeword of the code C0 can be encoded by the generator matrix of C and therefore this arrangement for transferring data offers a safe and swift mode. © 2013 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.
Resumo:
The expansion of citizen participation in the public sphere depends directly of access information on the performance of elected representatives, especially with regard to their voting decisions during their terms. The Information Science can assist in this process, proposing and evaluating models of access to such information that may be obtained from data to be provided by the official websites from legislative, in levels federal, state and municipal. It is proposed in this paper to analyze the process of collecting and using of data about votes of senators in order to promote the use of this model in other spheres. From analyzed data a affinity matrix was developed to identifying the relationship between each of the parliamentary with others, based on the similarities of the decisions taken in all the open votes. It was also analyzed the development of initial visualizations and the extension of the scope of the search through the application of data obtained in all the affinities between parliamentarians and to obtain an average affinity between parties, enabling new dimensions of analysis to the data collected. The preparation of the full matrix of relations of affinity among parliamentarians can provide a new horizon of possibilities for developing new forms of visualization and analysis, increasing the visibility of parliamentary actions with society.
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
Includes bibliography
Resumo:
Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.