970 resultados para Myocardial microvascular endothelial cells
Resumo:
The brain requires a constant and substantial energy supply to maintain its main functions. For decades, it was assumed that glucose was the major if not the only significant source of energy for neurons. This view was supported by the expression of specific facilitative glucose transporters on cerebral blood vessels, as well as neurons. Despite the fact that glucose remains a key energetic substrate for the brain, growing evidence suggests a different scenario. Thus astrocytes, a major type of glial cells that express their own glucose transporter, play a critical role in coupling synaptic activity with glucose utilization. It was shown that glutamatergic activity triggers an enhancement of aerobic glycolysis in this cell type. As a result, lactate is provided to neurons as an additional energy substrate. Indeed, lactate has proven to be a preferential energy substrate for neurons under various conditions. A family of proton-linked carriers known as monocarboxylate transporters has been described and specific members have been found to be expressed by endothelial cells, astrocytes and neurons. Moreover, these transporters are subject to fine regulation of their expression levels and localization, notably in neurons, which suggests that lactate supply could be adjusted as a function of their level of activity. Considering the importance of energetics in the aetiology of several neurodegenerative diseases, a better understanding of its cellular and molecular underpinnings might have important implications for the future development of neuroprotective strategies.
Resumo:
Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.
Resumo:
Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.
Resumo:
Background and aims: Increased pancreatitis associated protein (PAP) mRNA has been reported in active inflammatory bowel disease (IBD). The aims of the current study were to characterise PAP production in IBD and the effects of PAP on inflammation. Patients and methods: Serum PAP levels were determined in healthy controls (n¿=¿29), inflammatory controls (n¿=¿14), and IBD patients (n¿=¿171). Ex vivo PAP secretion in intestinal tissue was measured in 56 IBD patients and 13 healthy controls. Cellular origin of PAP was determined by immunohistochemistry. The effects of exogenous PAP on nuclear factor ¿B (NF¿B) activation, proinflammatory cytokine production, and endothelial adhesion molecule expression were also analysed ex vivo. Results: Patients with active IBD had increased serum PAP levels compared with controls, and these levels correlated with clinical and endoscopic disease severity. Ex vivo intestinal PAP synthesis was increased in active IBD and correlated with endoscopic and histological severity of inflammatory lesions. PAP localised to colonic Paneth cells. Incubation of mucosa from active Crohn¿s disease with PAP dose dependently reduced proinflammatory cytokines secretion. PAP prevented TNF-¿ induced NF¿B activation in monocytic, epithelial, and endothelial cells and reduced proinflammatory cytokine mRNA levels and adhesion molecule expression. Conclusions: PAP is synthesised by Paneth cells and is overexpressed in colonic tissue of active IBD. PAP inhibits NF¿B activation and downregulates cytokine production and adhesion molecule expression in inflamed tissue. It may represent an anti-inflammatory mechanism and new therapeutic strategy in IBD.
Resumo:
Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
Resumo:
The vascular endothelium has been shown to play a pivotal role in the pathophysiology of sepsis through the expression of surface proteins and secretion of soluble mediators. Endocan (endothelial cell-specific molecule-1), a 50-kDa dermatan sulfate proteoglycan, is expressed by endothelial cells in lung and kidney and can be detected at low levels in the serum of healthy subjects. Increased concentrations were described in patients with sepsis, severe sepsis and septic shock compared to healthy individuals, with serum concentrations related to the severity of illness. In the present study, we investigated endocan, procalcitonin and C-reactive protein in postmortem serum from femoral blood in a series of sepsis-related fatalities and control individuals who underwent medicolegal investigations. Endocan was also measured in pericardial fluid. Two study groups were prospectively formed, a sepsis-related fatalities group and a control group. The sepsis-related fatalities group consisted of sixteen forensic autopsy cases with documented clinical diagnosis of sepsis in vivo. The control group consisted of sixteen forensic autopsy cases with various noninfectious causes of death. Postmortem serum endocan concentrations were significantly higher in the sepsis group, with values ranging from 0.519ng/ml to 6.756ng/ml. In the control group, endocan levels were undetectable in eleven out of sixteen cases. The results of the data analysis revealed similar endocan concentrations in the pericardial fluid of both studied groups. Endocan can be considered a suitable biological parameter for the detection of sepsis-related deaths in forensic pathology routine.
Resumo:
The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.
Resumo:
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12-CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of "selective blockade" of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.
Resumo:
AIMS: Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension. METHODS AND RESULTS: We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression. CONCLUSION: In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways.
Resumo:
Introduction: Chronic insufficiency alters homeostasis, in part due to endothelial inflammation. Plasminogen activator inhibitor-1 (PAI-1) is increased in renal disease, contributing to vascular damage. We assessed PAI-1 activity and PAI-1 4G/5G polymorphism in hemodialysis (HD) subjects and any association between thrombotic vascular access (VA) events and PAI-1 polymorphism. Methods: Prospective, observational study in 36 HD patients: mean age: 66.6 +/- 12.5 yr, males n=26 (72%), time on HD: 28.71 +/- 22.45 months. Vascular accesses: 10 polytetrafluoroethylene grafts (PTFEG), 22 arteriovenous fistulae (AVF), four dual lumen catheters (CAT). Control group (CG): 40 subjects; mean age: 60.0 +/- 15 yrs, males n=30 (75%). Group A (GA): thrombotic events (n=12), and group B (GB): No events (n=24). Groups were no different according to age (69.2 +/- 9.12 vs. 65.3 +/- 14.5 yrs), gender (males: 7; 58.3% vs. 18; 81.8%), time on HD (26.1 +/- 14.7 vs. 30.1 +/- 38.7 months), causes of renal failure. Time to follow-up, for access thrombosis: 12 months. Results: PAI-1 levels in HD: 7.21 +/- 2.13 vs. CG: 0.42 +/- 0.27 U/ml (p < 0.000 1). PAI-1 4G/5G polymorphic variant distribution in HD: 5G/5G: 6 (17%),4G/5G: 23 (64%); 4G/4G: 7 (19%) and in CG: 5G/5G: 14 (35%); 4G/5G: 18 (45%); 4G/4G: 8 (20%). C-reactive protein (CRP) in HD: 24.5 +/- 15.2 mg/L vs. in CG 2.3 +/- 0.2 mg/L (p < 0.0001). PAI-1 4G/5G variants: GA: 5G/5G: 3; 4G/5G: 8; 4G/4G: 1; GB: 5G/5G: 3; 4G/5G: 15; 4G/4G: 6. Thrombosis occurred in 8/10 patients (80%) with PTFEG, 3/22 (9%) in AVF, and 1/4 (25%) in CAT. Among the eight PTFEG patients with thrombosis, seven were PAI 4G/5G. Conclusions: PAI-1 levels were elevated in HD patients, independent of their polymorphic variants, 4G/5G being the most prevalent variant. Our data suggest that in patients with PTFEG the 4G/5G variant might be associated with an increased thrombosis risk.
Resumo:
The gap junction protein connexin37 (Cx37) plays an important role in cell-cell communication in the vasculature. Cx37 is expressed in endothelial cells, platelets and megakaryocytes. We have recently shown that Cx37 limits thrombus propensity by permitting intercellular signaling between aggregating platelets. Here, we have performed high throughput phage display to identify potential binding partners for the regulatory intracellular C-terminus of Cx37 (Cx37CT). We retrieved 2 consensus binding motifs for Cx37CT: WHK...[K,R]XP... and FH-K...[K,R]XXP.... Sequence alignment against the NCBI protein database indicated 66% homology of one the selected peptides with FVIII B-domain. We performed cross-linking reactions using BS3 and confirmed that an 11-mer peptide of the FVIII B-domain sequence linked to recombinant Cx37CT. In vitro binding of this peptide to Cx37CT was also confirmed by surface plasmon resonance. The dissociation constant of FVIII B-domain peptides to Cx37CT was ~20 uM. Other peptide sequences, designed upstream or downstream of the FVIII B-domain sequence, showed very low or no affinity for Cx37CT. Finally, in vivo studies revealed that thrombin generation in platelet-poor plasma from Cx37-/- mice (endogenous thrombin potential: 634±11 nM min, mean±SEM) was increased compared to Cx37+/+ mice (427±12, P<0.001). Moreover, partial activated thromboplastin time (aPTT) was shorter in Cx37-/- (39.7±1.5 s) than in Cx37+/+ mice (45.9±1.8, P=0.03), whereas prothrombin time was comparable. The shorter aPTT in Cx37-/- mice correlated with higher circulating FVIII activity (46.0±0.7 vs. 53.5±2.7 s for Cx37+/+, P=0.03). Overall, our data show for the first time a functional interaction between FVIII and Cx37. This interaction may be relevant for the control of FVIII secretion and, thereby, in the regulation of levels of FVIII circulating in blood. In addition, these results may open new perspectives to improve the efficiency of recombinant FVIII manufacturing.
Resumo:
Angiogenesis is an important process in chronic inflammatory diseases. We observed that sera from patients with systemic vasculitis stimulated angiogenesis in an in vitro model using human umbilical vein endothelial cells cultured on a basement membrane (Matrigel) substrate. After 40% ammonium sulfate precipitation, angiogenic activity remained in the low molecular weight fraction and could be inactivated by heat. SDS-page of serum FPLC fractions exhibiting maximal angiogenic activity demonstrated two prominent species of 45 and 16-20 kD in patients' sera. These bands were much less apparent in sera obtained from control subjects. Amino-terminal sequencing of the 45-kD protein demonstrated that it was haptoglobin. Purified haptoglobin stimulated angiogenesis in a dose-dependent manner. The angiogenic activity of vasculitis patients' sera was partially inhibited by an antihaptoglobin antibody. Furthermore, serum haptoglobin levels in vasculitis patients correlated both with disease and angiogenic activity. Haptoglobin angiogenic activity was confirmed in two in vivo models using an implanted disc and a subcutaneous injection of basement membrane. Stimulation of angiogenesis is a newly recognized biological function of haptoglobin. The increased levels of haptoglobin found in chronic inflammatory conditions may play an important role in tissue repair. In systemic vasculitis, haptoglobin might also compensate for ischemia by promoting development of collateral vessels.
Resumo:
Streptococcus tigurinus is responsible for systemic infections in humans including infective endocarditis. We investigated whether the invasive trait of S. tigurinus in humans correlated with an increased ability to induce IE in rats. Rats with catheter-induced aortic vegetations were inoculated with 10⁴ CFU/ml of either of four S. tigurinus strains AZ_3a(T), AZ_4a, AZ_8 and AZ_14, isolated from patients with infective endocarditis or with the well known IE pathogen Streptococcus gordonii (Challis). Aortic infection was assessed after 24 h. S. tigurinus AZ_3a(T), AZ_4a and AZ_14 produced endocarditis in ≥80% of rats whereas S. gordonii produced endocarditis in only 33% of animals (P<0.05). S. tigurinus AZ_8 caused vegetation infection in 56% of the animals. The capacity of S. tigurinus to induce aortic infection was not related to their ability to bind extracellular matrix proteins (fibrinogen, fibronectin or collagen) or to trigger platelet aggregation. However, all S. tigurinus isolates showed an enhanced resistance to phagocytosis by macrophages and two of them had an increased ability to enter endothelial cells, key attributes of invasive streptococcal species.
Resumo:
Fabry disease is a lysosomal storage disorder (LSD) caused by a deficiency in alpha-galactosidase A. The disease is characterized by severe major organ involvement, but the pathologic mechanisms responsible have not been elucidated. Disruptions of autophagic processes have been reported for other LSDs, but have not yet been investigated in Fabry disease. Renal biopsies were obtained from five adult male Fabry disease patients before and after three years of enzyme replacement therapy (ERT) with agalsidase alfa. Vacuole accumulation was seen in renal biopsies from all patients compared with control biopsies. Decreases in the number of vacuoles were seen after three years of ERT primarily in renal endothelial cells and mesangial cells. Measurement of the levels of LC3, a specific autophagy marker, in cultured cells from Fabry patients revealed increased basal levels compared to cells from non-Fabry subjects and a larger increase in response to starvation than seen in non-Fabry cells. Starvation in the presence of protease inhibitors did not result in a significant increase in LC3 in Fabry cells, whereas a further increase in LC3 was observed in non-Fabry cells, an observation that is consistent with impaired autophagic flux in Fabry disease. Overexpression of LC3 mRNA in Fabry fibroblasts compared to control cells is consistent with an upregulation of autophagy. Furthermore, LC3 and p62/SQSTM1 (that binds to LC3) staining in renal tissues and in cultured fibroblasts from Fabry patients supports impairment of autophagic flux. These findings suggest that Fabry disease is linked to a deregulation of autophagy.
Resumo:
Résumé Le staphylocoque doré est un pathogène responsable d'une grande variété de maladies chez l'être humain. Il est extrêmement bien équipé de facteurs de virulence, dont les adhésines. Jusqu'à présent, 21 protéines liant des composants de tissus de l'hôte ("microbial surface components reacting with adherence matrix molecules, MSCRAMM") ont été identifiées, par exemple le "clumping factor" A (CIfA) ou la "fibronectin-binding protein" A (FnBPA). Néanmoins, pour la plupart de ces protéines, leur rôle dans la pathogénie des infections à staphylocoque doré reste à être élucidé. Le but de cette thèse est de contribuer à ce processus. Premièrement, les "MSCRAMM" CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ et SasK ont été exprimés dans une bactérie substitut, Lactococcus lactis, et testés pour leurs propriétés adhésives et leur pathogénicité dans un modèle d'endocardite expérimentale (voir chapitre 1). Cette technique a préalablement été utilisée avec succès et a l'avantage d'éviter le contexte complexe des redondances et systèmes de régulations propres au staphylocoque doré. Les résultats montrent que, de tous les facteurs de virulence testés, seuls CIfA et FnBPA sont d'importance primordiale dans le développement d'endocardite expérimentale. En ce qui concerne l'internalisation dans les cellules endothéliales, seulement FnPBA et FnBPB en sont capables. En outre, l'adhérence à chacun des ligands testés (fibrinogène, fibronectine, kératine, élastine, collagène, et les caillots de fibrine et plaquettes) est très spécifique et est médiée par une ou plusieures adhésines provenant du staphylocoque doré. Par conséquence, ces protéines pourraient représenter des cibles potentielles pour de futures thérapies anti-adhésives contre le staphylocoque doré. Deuxièmement, l'expression des facteurs de virulence décrits dans le chapitre 1 par les souches recombinantes de lactocoques a été vérifiée par une nouvelle méthode utilisant la spectrométrie de masse (voir chapitre 2). L'expression de toutes ces protéines par les souches recombinantes a pu être confirmée. Cette méthode pourrait être de grande valeur dans la vérification de la présence de protéines quelconques dans toutes sortes d'applications. Troisièmement, deux facteurs de virulence du staphylocoque, CIfA et une forme tronquée de FnBPA, ont été exprimés de façon simultanée dans une souche recombinante de lactocoque (voir chapitre 3}. Contrairement à une souche exprimant la FnBPA entière, une souche exprimant la forme tronquée de FnPBA, qui ne contient plus le domaine capable de lier le fibrinogène, perd complètement sa capacité d'infecter dans le modèle d'endocardite expérimentale. Par contre, il est montré que, en cas de complémentation de la forme tronquée de FnPBA avec le domaine de liaison au fibrinogène de CIfA dans la souche double recombinante, le phénotype intégral de FnBPA est récupéré. En conséquence, les facteurs de virulence sont capables de coopérer dans le but de la pathogénie des infections à staphylocoque doré. Summary Staphylococcus aureus is a human pathogen causing a wide variety of disease. It is extremely well equipped with both secreted and surface-attached virulence factors, which can act as adhesins to host tissues. In total, twenty-one microbial surface components reacting with adherence matrix molecules (MSCRAMMs) have been identified, so far. These include well-characterized adhesins such as clumping factor A (CIfA) or fibronectin-binding protein A (FnBPA). However, for most of them their potential role in the pathogenesis of staphylococcal infections remains to be elucidated. This has been attempted in this thesis work. Firstly, the staphylococcal MSCRAMMs CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ, and SasK have been expressed in a surrogate bacterium, Lactococcus lactis, and tested for their in vitro adherence properties and their pathogenicity in the rat model of experimental endocarditis (see chapter 1). This model has successfully been used previously, and has the advantage of bypassing the complex S. aureus background of redundancies and differential regulation. Here, it is shown that of the seventeen tested potential virulence factors, only CIfA and FnBPA are critical for the pathogenesis of experimental endocarditis in rats, while internalization into bovine endothelial cells is mediated exclusively by FnBPA and FnBPB. In addition, the adherence to specific host ligands (fibrinogen, fibronectin, keratin, elastin, collagen, and fibrin-platelet clots) is highly specific and mediated by one or few staphylococcal adhesins, respectively. Thus, these surface proteins may represent potential targets for an anti-adhesive strategy against S. aureus infections. Secondly, the expression of the staphylococcal proteins by L. lactis recombinants described in chapter 1 was tested by a novel method using mass spectrometry (see chapter 2). The expression of all the staphylococcal proteins by the respective recombinant lactococcal strain could be confirmed. This method may prove to be of great value in the confirmation of the presence of any given protein in various experimental settings. Thirdly, two staphylococcal virulence factors, CIfA and a truncated form of FnBPA, were expressed simultaneously in one recombinant lactococcal strain (see chapter 3). In contrast to a recombinant strain expressing full-length FnPBA, a recombinant strain expressing a truncated FnPBA, lacking the domain capable of binding fibrinogen, completely lost infectivity in experimental endocarditis. However, it is shown that the complementation of the truncated form of FnBPA with the fibrinogenbinding domain of CIfA in a double recombinant strain results in the recovery of the complete phenotype of full-length FnBPA. Thus, virulence factors can cooperate in the pathogenesis of staphylococcal infections.