950 resultados para Multiple Factor Role
Resumo:
The paper presents a multiple input single output fuzzy logic governor algorithm that can be used to improve the transient response of a diesel generating set, when supplying an islanded load. The proposed governor uses the traditional speed input in addition to voltage and power factor to modify the fuelling requirements during various load disturbances. The use of fuzzy logic control allows the use of PID type structures that can provide variable gain strategies to account for non-linearities in the system. Fuzzy logic also provides a means of processing other input information by linguistic reasoning and a logical control output to aid the governor action during transient disturbance. The test results were obtained using a 50 kVA naturally aspirated diesel generator testing facility. Both real and reactive load tests were conducted. The complex load test results demonstrate that, by using additional inputs to the governor algorithm, enhanced generator transient speed recovery response can be obtained.
Resumo:
The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.
Resumo:
The radiation-induced bystander effect (RIBE) increases the probability of cellular response and therefore has important implications for cancer risk assessment following low-dose irradiation and for the likelihood of secondary cancers after radiotherapy. However, our knowledge of bystander signaling factors, especially those having long half-lives, is still limited. The present study found that, when a fraction of cells within a glioblastoma population were individually irradiated with helium ions from a particle microbeam, the yield of micronuclei (MN) in the nontargeted cells was increased, but these bystander MN were eliminated by treating the cells with either aminoguanidine (an inhibitor of inducible nitric oxide (NO) synthase) or anti-transforming growth factor beta1 (anti-TGF-beta1), indicating that NO and TGF-beta1 are involved in the RIBE. Intracellular NO was detected in the bystander cells, and additional TGF-beta1 was detected in the medium from irradiated T98G cells, but it was diminished by aminoguanidine. Consistent with this, an NO donor, diethylamine nitric oxide (DEANO), induced TGF-beta1 generation in T98G cells. Conversely, treatment of cells with recombinant TGF-beta1 could also induce NO and MN in T98G cells. Treatment of T98G cells with anti-TGF-beta1 inhibited the NO production when only 1% of cells were targeted, but not when 100% of cells were targeted. Our results indicate that, downstream of radiation-induced NO, TGF-beta1 can be released from targeted T98G cells and plays a key role as a signaling factor in the RIBE by further inducing free radicals and DNA damage in the nontargeted bystander cells.
Resumo:
Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.
Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.
Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.
Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.
Resumo:
The role of the serine/threonine protein kinase B (PKB, also known as Akt) is becoming increasingly more evident to researchers investigating diverse cellular processes such as glucose uptake, cell-cycle progression, apoptosis and transcriptional regulation. New roles for PKB/Akt have been described in various organisms and biological processes. From the regulation of ovarian ecdysteroid production in the humble mosquito (Aedes aegypti), through the seasonal, tissue-specific regulation of PKB/Akt during the hibernation of yellow-bellied marmots (Marmota flaviventris), to the control of glucose metabolism and insulin signalling in the mouse (Mus musculus), our knowledge of the function of this protein kinase has expanded greatly in recent years. Significant advances in all aspects of PKB/Akt signalling have occurred in the past 2 years, including biological insights, novel substrates and newly discovered regulatory mechanisms of PKB/Akt. Collectively, these data expand the current models of PKB/Akt signalling and highlight potential directions for PKB/Akt research in the future.
Resumo:
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased similar to6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.
Resumo:
Several personality constructs have been theorised to underlie right-wing authoritarianism (RWA). In samples from New Zealand and Germany (Ns = 218, 259), we tested whether these constructs can account for specific variance in RWA. In both samples, social conformity and personal need for structure were independent predictors of RWA. In Sample 2, where also openness to experience was measured, social conformity and personal need for structure fully mediated the impact of the higher-order factor of openness on RWA. Our results contribute to the integration of current approaches to the personality basis of authoritarianism. and suggest that two distinct personality processes contribute to RWA: An interpersonal process related to social conformity and an intrapersonal process related to rigid cognitive style. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFa and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NF?B was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Resumo:
Abstract A classic physiologic response to hypoxia in humans is the up-regulation of the ERYTHROPOIETIN (EPO) gene, which is the central regulator of red blood cell mass. The EPO gene, in turn, is activated by hypoxia inducible factor (HIF). HIF is a transcription factor consisting of an alpha subunit (HIF-alpha) and a beta subunit (HIF-beta). Under normoxic conditions, prolyl hydroxylase domain protein (PHD, also known as HIF prolyl hydroxylase and egg laying-defective nine protein) site specifically hydroxylates HIF-alpha in a conserved LXXLAP motif (where underlining indicates the hydroxylacceptor proline). This provides a recognition motif for the von Hippel Lindau protein, a component of an E3 ubiquitin ligase complex that targets hydroxylated HIF-alpha for degradation. Under hypoxic conditions, this inherently oxygen-dependent modification is arrested, thereby stabilizing HIF-alpha and allowing it to activate the EPO gene. We previously identified and characterized an erythrocytosis-associated HIF2A mutation, G537W. More recently, we reported two additional erythrocytosis-associated HIF2A mutations, G537R and M535V. Here, we describe the functional characterization of these two mutants as well as a third novel erythrocytosis-associated mutation, P534L. These mutations affect residues C-terminal to the LXXLAP motif. We find that all result in impaired degradation and thus aberrant stabilization of HIF-2alpha. However, each exhibits a distinct profile with respect to their effects on PHD2 binding and von Hippel Lindau interaction. These findings reinforce the importance of HIF-2alpha in human EPO regulation, demonstrate heterogeneity of functional defects arising from these mutations, and point to a critical role for residues C-terminal to the LXXLAP motif in HIF-alpha.
Resumo:
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.
The formation of advanced glycation end products (AGEs) is a natural function of ageing but accumulation of these adducts also represents a key pathophysiological event in a range of important human diseases. AGEs act as mediators of neurodegeneration, induce irreversible changes in the extracellular matrix, vascular dysfunction and pro-inflammatory signalling. Since many cells and tissues of the eye are profoundly influenced by such processes, it is fitting that advanced glycation is now receiving considerable attention as a possible pathogenic factor in visual disorders.
This review presents the current evidence for a pathogenic role for AGEs and activation of the receptor for AGEs (RAGE) in initiation and progression of retinal disease. It draws upon the clinical and experimental literature and highlights the opportunities for further research that would definitively establish these adducts as important instigators of retinal disease. The therapeutic potential for novel agents that can ameliorate AGE formation of attenuate RAGE signalling in the retina is also discussed.
Resumo:
This article describes the results of a comprehensive investigation to determine the link between process parameters and observed wall thickness output for the plug-assisted thermoforming process. The overall objective of the work was to systematically investigate the process parameters that may be adjusted during production to control the wall thickness distribution of parts manufactured by plug-assisted thermoforming. The parameters investigated were the sheet temperature, plug temperature, plug speed, plug displacement, plug shape, and air pressure. As well as quantifying the effects of each parameter on the wall thickness distribution, a further aim of the work was to improve the understanding of the physical mechanisms of deformation of the sheet during the different stages of the process. The process parameters shown to have the greatest effect on experimentally determined wall thickness distribution were the plug displacement, sheet temperature, plug temperature, and plug shape. It is proposed that during the plug-assisted thermoforming of polystyrene the temperature dependent friction between the plug and sheet surface was the most important factor in determining product wall thickness distribution, whereas heat transfer was shown to play a less important role. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers
Resumo:
DRIFTS, TGA and resistance measurements have been used to study the mechanism of water and hydrogen interaction accompanied by a resistance change (sensor signal) of blank and Pd doped SnO2. It was found that a highly hydroxylated surface of blank SnO2 reacts with gases through bridging hydroxyl groups, whereas the Pd doped materials interact with hydrogen and water through bridging oxygen. In the case of blank SnO2 the sensor signal maximum towards H-2 in dry air (R-0/R-g) is observed at similar to 345 degrees C, and towards water, at similar to 180 degrees C, which results in high selectivity to hydrogen in the presence of water vapors (minor humidity effect). In contrast, on doping with Pd the response to hydrogen in dry air and to water occurred in the same temperature region (ca. 140 degrees C) leading to low selectivity with a high effect of humidity. An increase in water concentration in the gas phase changes the hydrogen interaction mechanism of Pd doped materials, while that of blank SnO2 is unchanged. The interaction of hydrogen with the catalyst doped SnO2 occurs predominantly through hydroxyl groups when the volumetric concentration of water in the gas phase is higher than that of H-2 by a factor of 1000.
Resumo:
Our knowledge of pathogenesis has benefited from a better understanding of the roles of specific virulence factors in disease. To determine the role of the virulence factor ZapA, a 54-kDa metalloproteinase of Proteus mirabilis, in prostatitis, rats were infected with either wild-type (WT) P. mirabilis or its isogenic ZapA- mutant KW360. The WT produced both acute and chronic prostatitis showing the typical histological progressions that are the hallmarks of these diseases. Infection with the ZapA- mutant, however, resulted in reduced levels of acute prostatitis, as determined from lower levels of tissue damage, bacterial colonization, and inflammation. Further, the ZapA- mutant failed to establish a chronic infection, in that bacteria were cleared from the prostate, inflammation was resolved, and tissue was seen to be healing. Clearance from the prostate was not the result of a reduced capacity of the ZapA- mutant to form biofilms in vitro. These finding clearly define ZapA as an important virulence factor in both acute and chronic bacterial prostatitis.
Resumo:
Purpose. Neovascularization occurs in response to tissue ischemia and growth factor stimulation. In ischemic retinopathies, however, new vessels fail to restore the hypoxic tissue; instead, they infiltrate the transparent vitreous. In a model of oxygen-induced retinopathy (OIR), TNFa and iNOS, upregulated in response to tissue ischemia, are cytotoxic and inhibit vascular repair. The aim of this study was to investigate the mechanism for this effect.
Methods. Wild-type C57/BL6 (WT) and TNFa-/- mice were subjected to OIR by exposure to 75% oxygen (postnatal days 7–12). The retinas were removed during the hypoxic phase of the model. Retinal cell death was determined by TUNEL staining, and the microglial cells were quantified after Z-series capture with a confocal microscope. In situ peroxynitrite and superoxide were measured by using the fluorescent dyes DCF and DHE. iNOS, nitrotyrosine, and arginase were analyzed by real-time PCR, Western blot analysis, and activity determined by radiolabeled arginine conversion. Astrocyte coverage was examined after GFAP immunostaining.
Results. The TNFa-/- animals displayed a significant reduction in TUNEL-positive apoptotic cells in the inner nuclear layer of the avascular retina compared with that in the WT control mice. The reduction coincided with enhanced astrocytic survival and an increase in microglial cells actively engaged in phagocytosing apoptotic debris that displayed low ROS, RNS, and NO production and high arginase activity.
Conclusions. Collectively, the results suggest that improved vascular recovery in the absence of TNFa is associated with enhanced astrocyte survival and that both phenomena are dependent on preservation of microglial cells that display an anti-inflammatory phenotype during the early ischemic phase of OIR.
Resumo:
Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.