927 resultados para Multiple Change-point Analysis
Resumo:
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy.
Resumo:
The early phase of psychotherapy has been regarded as a sensitive period in the unfolding of psychotherapy leading to positive outcomes. However, there is disagreement about the degree to which early (especially relationship-related) session experiences predict outcome over and above initial levels of distress and early response to treatment. The goal of the present study was to simultaneously examine outcome at post treatment as a function of (a) intake symptom and interpersonal distress as well as early change in well-being and symptoms, (b) the patient's early session-experiences, (c) the therapist's early session-experiences/interventions, and (d) their interactions. The data of 430 psychotherapy completers treated by 151 therapists were analyzed using hierarchical linear models. Results indicate that early positive intra- and interpersonal session experiences as reported by patients and therapists after the sessions explained 58% of variance of a composite outcome measure, taking intake distress and early response into account. All predictors (other than problem-activating therapists' interventions) contributed to later treatment outcomes if entered as single predictors. However, the multi-predictor analyses indicated that interpersonal distress at intake as well as the early interpersonal session experiences by patients and therapists remained robust predictors of outcome. The findings underscore that early in therapy therapists (and their supervisors) need to understand and monitor multiple interconnected components simultaneously
Resumo:
The identification of plausible causes for water body status deterioration will be much easier if it can build on available, reliable, extensive and comprehensive biogeochemical monitoring data (preferably aggregated in a database). A plausible identification of such causes is a prerequisite for well-informed decisions on which mitigation or remediation measures to take. In this chapter, first a rationale for an extended monitoring programme is provided; it is then compared to the one required by the Water Framework Directive (WFD). This proposal includes a list of relevant parameters that are needed for an integrated, a priori status assessment. Secondly, a few sophisticated statistical tools are described that subsequently allow for the estiation of the magnitude of impairment as well as the likely relative importance of different stressors in a multiple stressed environment. The advantages and restrictions of these rather complicated analytical methods are discussed. Finally, the use of Decision Support Systems (DSS) is advocated with regard to the specific WFD implementation requirements.
Resumo:
Digital analysis of the occlusal contacts can be performed with the T-scan device (T Scan III, TekScan, Boston, USA). However, the thickness of the interocclusal T-scan sheet (100 μm) may lead to a displacement of the mandible. Thus, the aim of this study was to investigate the impact of the T-scan sheet on the position of the mandibular condyles in maximum intercuspidation. Twenty dentate subjects with healthy jaw function were enrolled in the study. An ultrasonic axiography device was used to measure the position of the condyles. Ten 3D condyle positions in maximum intercuspidation of the teeth were recorded: first the reference position without the sheet, then 3 times without the sheet, 3 times with the sheet, and finally again 3 times without the sheet. There was a statistically significant difference (Wilcoxon matched pairs test) between the condyle positions with and without the interocclusally positioned T-scan sheet (P < 0.0005). The T-scan device lead to a displacement of the condyles of about 1 mm mainly in ventral direction (P = 0.005). Thus, occlusal analysis is not performed in physiological, maximum intercuspidation. This has to be considered when interpreting the measured contact points.
Resumo:
Abstract. Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El’gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007). Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (�18O) stack LR04 (Lisiecki and Raymo, 2005) and the summer insolation at 67.5� N, with the extended Lake El’gygytgyn parameter records of magnetic susceptibility (�LF), total organic carbon content (TOC) and the chemical index of alteration (CIA; Minyuk et al., 2007), revealed that all stages back to marine isotope stage (MIS) 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.
Resumo:
Previous studies have shown that collective property rights offer higher flexibility than individual property and improve sustainable community-based forest management. Our case study, carried out in the Beni department of Bolivia, does not contradict this assertion, but shows that collective rights have been granted in areas where ecological contexts and market facilities were less favourable to intensive land use. Previous experiences suggest investigating political processes in order to understand the criteria according to which access rights were distributed. Based on remote sensing and on a multi-level land governance framework, our research confirms that land placed under collective rights, compared to individual property, is less affected by deforestation among Andean settlements. However, analysis of the historical process of land distribution in the area shows that the distribution of property rights is the result of a political process based on economic, spatial, and environmental strategies that are defined by multiple stakeholders. Collective titles were established in the more remote areas and distributed to communities with lower productive potentialities. Land rights are thus a secondary factor of forest cover change which results from diverse political compromises based on population distribution, accessibility, environmental perceptions, and expected production or extraction incomes.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Resumo:
BACKGROUND Statins have anti-inflammatory and immunomodulatory properties in addition to lipid-lowering effects. OBJECTIVES To report the 12-month extension of a phase II trial evaluating the efficacy, safety and tolerability of atorvastatin 40 mg/d added to interferon beta-1b (IFNB-1b) in relapsing-remitting multiple sclerosis (RRMS). METHODS In the randomized, multicenter, parallel-group, rater-blinded core study, 77 RRMS patients started IFNB-1b. At month three they were randomized 1∶1 to receive atorvastatin 40 mg/d or not in addition to IFNB-1b until month 15. In the subsequent extension study, patients continued with unchanged medication for another 12 months. Data at study end were compared to data at month three of the core study. RESULTS 27 of 72 patients that finished the core study entered the extension study. 45 patients were lost mainly due to a safety analysis during the core study including a recruitment stop for the extension study. The primary end point, the proportion of patients with new lesions on T2-weighted images was equal in both groups (odds ratio 1.926; 95% CI 0.265-14.0007; p = 0.51). All secondary endpoints including number of new lesions and total lesion volume on T2-weighted images, total number of Gd-enhancing lesions on T1-weighted images, volume of grey and white matter, EDSS, MSFC, relapse rate, number of relapse-free patients and neutralizing antibodies did not show significant differences either. The combination therapy was well tolerated. CONCLUSIONS Atorvastatin 40 mg/day in addition to IFNB-1b did not have any beneficial effects on RRMS compared to IFNB-1b monotherapy over a period of 24 months.
Resumo:
OBJECTIVE Texture analysis is an alternative method to quantitatively assess MR-images. In this study, we introduce dynamic texture parameter analysis (DTPA), a novel technique to investigate the temporal evolution of texture parameters using dynamic susceptibility contrast enhanced (DSCE) imaging. Here, we aim to introduce the method and its application on enhancing lesions (EL), non-enhancing lesions (NEL) and normal appearing white matter (NAWM) in multiple sclerosis (MS). METHODS We investigated 18 patients with MS and clinical isolated syndrome (CIS), according to the 2010 McDonald's criteria using DSCE imaging at different field strengths (1.5 and 3 Tesla). Tissues of interest (TOIs) were defined within 27 EL, 29 NEL and 37 NAWM areas after normalization and eight histogram-based texture parameter maps (TPMs) were computed. TPMs quantify the heterogeneity of the TOI. For every TOI, the average, variance, skewness, kurtosis and variance-of-the-variance statistical parameters were calculated. These TOI parameters were further analyzed using one-way ANOVA followed by multiple Wilcoxon sum rank testing corrected for multiple comparisons. RESULTS Tissue- and time-dependent differences were observed in the dynamics of computed texture parameters. Sixteen parameters discriminated between EL, NEL and NAWM (pAVG = 0.0005). Significant differences in the DTPA texture maps were found during inflow (52 parameters), outflow (40 parameters) and reperfusion (62 parameters). The strongest discriminators among the TPMs were observed in the variance-related parameters, while skewness and kurtosis TPMs were in general less sensitive to detect differences between the tissues. CONCLUSION DTPA of DSCE image time series revealed characteristic time responses for ELs, NELs and NAWM. This may be further used for a refined quantitative grading of MS lesions during their evolution from acute to chronic state. DTPA discriminates lesions beyond features of enhancement or T2-hypersignal, on a numeric scale allowing for a more subtle grading of MS-lesions.
Resumo:
A recent study relying purely on statistical analysis of relatively short time series suggested substantial re-thinking of the traditional view about causality explaining the detected rising trend of atmospheric CO2 (atmCO2) concentrations. If these results are well-justified then they should surely compel a fundamental scientific shift in paradigms regarding both atmospheric greenhouse warming mechanism and global carbon cycle. However, the presented work suffers from serious logical deficiencies such as, 1) what could be the sink for fossil fuel CO2 emissions, if neither the atmosphere nor the ocean – as suggested by the authors – plays a role? 2) What is the alternative explanation for ocean acidification if the ocean is a net source of CO2 to the atmosphere? Probably the most provocative point of the commented study is that anthropogenic emissions have little influence on atmCO2 concentrations. The authors have obviously ignored the reconstructed and directly measured carbon isotopic trends of atmCO2 (both δ13C, and radiocarbon dilution) and the declining O2/N2 ratio, although these parameters provide solid evidence that fossil fuel combustion is the major source of atmCO2 increase throughout the Industrial Era.
Resumo:
Carbon sequestration in community forests presents a major challenge for the Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme. This article uses a comparative analysis of the agricultural and forestry practices of indigenous peoples and settlers in the Bolivian Amazon to show how community-level institutions regulate the trade-offs between community livelihoods, forest species diversity, and carbon sequestration. The authors argue that REDD+ implementation in such areas runs the risk of: 1) reinforcing economic inequalities based on previous and potential land use impacts on ecosystems (baseline), depending on the socio-cultural groups targeted; 2) increasing pressure on land used for food production, possibly reducing food security and redirecting labour towards scarce off-farm income opportunities; 3) increasing dependence on external funding and carbon market fluctuations instead of local production strategies; and 4) further incentivising the privatization and commodification of land to avoid transaction costs associated with collective property rights. The article also advises against taking a strictly economic, market-based approach to carbon sequestration, arguing that such an approach could endanger fragile socio-ecological systems. REDD+ schemes should directly support existing efforts towards forest sustainability rather than simply compensating local land users for avoiding deforestation and forest degradation