974 resultados para Multiobjective Evolutionary Algorithm
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
The paper presents a design for a hardware genetic algorithm which uses a pipeline of systolic arrays. These arrays have been designed using systolic synthesis techniques which involve expressing the algorithm as a set of uniform recurrence relations. The final design divorces the fitness function evaluation from the hardware and can process chromosomes of different lengths, giving the design a generic quality. The paper demonstrates the design methodology by progressively re-writing a simple genetic algorithm, expressed in C code, into a form from which systolic structures can be deduced. This paper extends previous work by introducing a simplification to a previous systolic design for the genetic algorithm. The simplification results in the removal of 2N 2 + 4N cells and reduces the time complexity by 3N + 1 cycles.
Resumo:
We advocate the use of systolic design techniques to create custom hardware for Custom Computing Machines. We have developed a hardware genetic algorithm based on systolic arrays to illustrate the feasibility of the approach. The architecture is independent of the lengths of chromosomes used and can be scaled in size to accommodate different population sizes. An FPGA prototype design can process 16 million genes per second.
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Resumo:
Many pathogens transmit to new hosts by both infection (horizontal transmission) and transfer to the infected host's offspring (vertical transmission). These two transmission modes require speci®c adap- tations of the pathogen that can be mutually exclusive, resulting in a trade-off between horizontal and vertical transmission. We show that in mathematical models such trade-offs can lead to the simultaneous existence of two evolutionary stable states (evolutionary bi-stability) of allocation of resources to the two modes of transmission. We also show that jumping between evolutionary stable states can be induced by gradual environmental changes. Using quantitative PCR-based estimates of abundance in seed and vege- tative parts, we show that the pathogen of wheat, Phaeosphaeria nodorum, has jumped between two distinct states of transmission mode twice in the past 160 years, which, based on published evidence, we interpret as adaptation to environmental change. The ®nding of evolutionary bi-stability has impli- cations for human, animal and other plant diseases. An ill-judged change in a disease control programme could cause the pathogen to evolve a new, and possibly more damaging, combination of transmission modes. Similarly, environmental changes can shift the balance between transmission modes, with adverse effects on human, animal and plant health.
Resumo:
Capturing the pattern of structural change is a relevant task in applied demand analysis, as consumer preferences may vary significantly over time. Filtering and smoothing techniques have recently played an increasingly relevant role. A dynamic Almost Ideal Demand System with random walk parameters is estimated in order to detect modifications in consumer habits and preferences, as well as changes in the behavioural response to prices and income. Systemwise estimation, consistent with the underlying constraints from economic theory, is achieved through the EM algorithm. The proposed model is applied to UK aggregate consumption of alcohol and tobacco, using quarterly data from 1963 to 2003. Increased alcohol consumption is explained by a preference shift, addictive behaviour and a lower price elasticity. The dynamic and time-varying specification is consistent with the theoretical requirements imposed at each sample point. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.