825 resultados para Modeling Non-Verbal Behaviors Using Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: avaliar o desempenho em habilidades auditivas e as condições de orelha média de crianças de 4 a 6 anos de idade. MÉTODO: foram aplicados os testes de detecção sonora (audiômetro pediátrico em 20dBNA), a Avaliação Simplificada do Processamento Auditivo (ASPA) e as medidas de imitância acústica (handtymp com tom de 226Hz) em 61 crianças com média de idade de 5,65 anos. Para comparar os resultados das provas de habilidades auditivas e das medidas da imitância acústica foi aplicado o teste exato de Fisher com nível de significância de p< 0,05. RESULTADOS: houve alteração em pelo menos uma das habilidades auditivas investigadas em 24,6% das crianças. Houve alteração timpanométrica em 34,4% das crianças e 64% foram classificadas no critério "falha" para a pesquisa do reflexo acústico ispilateral. As crianças mais jovens apresentaram maior ocorrência de alterações de orelha média, mas não houve diferença estatisticamente significante entre as diferentes idades para as provas realizadas. CONCLUSÃO: as crianças mais jovens apresentaram maior ocorrência de alterações nas provas de habilidades auditivas e nas medidas de imitância acústica. Programas de investigação e acompanhamento das condições de orelha média e das habilidades auditivas em idade pré-escolar e escolar podem eliminar ou minimizar intercorrências que alterariam o desenvolvimento sócio-linguístico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is to deepen the understanding of grown-up blind people’s non-verbal communication, including body expressions and paralinguistic (voice) expressions. More specifically, the thesis includes the following three studies: Blind people’s different forms of body expressions, blind people’s non-verbal conversation regulation and blind people’s experience of their own non-verbal expressions. The focus has been on the blind participants’ competence and on their subjective perspectives. I have also compared congenitally and adventitiously blind in all of the studies. The approach is mainly phenomenological and the qualitative empirical phenomenological psychological method is the primary methodological source of inspiration. Fourteen blind persons (and also some sigthed persons) participated. They have no other obvious disability than the blindness and their ages vary between 18 and 54. Data in the first two studies consisted of video recordings and data in the last study consisted of interviews. The overall results can be summarized in the following three points: 1. There are (almost) only similarities between the congenitally blind and adventitiously blind persons concerning their paralinguistic expressions. 2. There are mainly similarities between the two groups with respect to the occurrences of different body expressive forms. 3. There are also some differences between the groups. For example, the congenitally blind persons seem to have a limited ability to use the body in an abstract and symbolic way and they often mentioned that they have been told that their body expressions deviate from sighted people’s norms. But the persons in both groups also struggle to see themselves as unique persons who express themselves on the basis of their conditions and their previous experiences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi sviluppa le proposte teoriche della Linguistica Cognitiva a proposito della metafora e propone una loro possibile applicazione in ambito didattico. La linguistica cognitiva costituisce la cornice interpretativa della ricerca, a partire dai suoi concetti principali: la prospettiva integrata, l’embodiment, la centralità della semantica, l’attenzione per la psicolinguistica e le neuroscienze. All’interno di questo panorama, prende vigore un’idea di metafora come punto d’incontro tra lingua e pensiero, come criterio organizzatore delle conoscenze, strumento conoscitivo fondamentale nei processi di apprendimento. A livello didattico, la metafora si rivela imprescindibile sia come strumento operativo che come oggetto di riflessione. L’approccio cognitivista può fornire utili indicazioni su come impostare un percorso didattico sulla metafora. Nel presente lavoro, si indaga in particolare l’uso didattico di stimoli non verbali nel rafforzamento delle competenze metaforiche di studenti di scuola media. Si è scelto come materiale di partenza la pubblicità, per due motivi: il diffuso impiego di strategie retoriche in ambito pubblicitario e la specificità comunicativa del genere, che permette una chiara disambiguazione di fenomeni che, in altri contesti, non potrebbero essere analizzati con la stessa univocità. Si presenta dunque un laboratorio finalizzato al miglioramento della competenza metaforica degli studenti che si avvale di due strategie complementari: da una parte, una spiegazione ispirata ai modelli cognitivisti, sia nella terminologia impiegata che nella modalità di analisi (di tipo usage-based); dall’altra un training con metafore visive in pubblicità, che comprende una fase di analisi e una fase di produzione. È stato usato un test, suddiviso in compiti specifici, per oggettivare il più possibile i progressi degli studenti alla fine del training, ma anche per rilevare le difficoltà e i punti di forza nell’analisi rispetto sia ai contesti d’uso (letterario e convenzionale) sia alle forme linguistiche assunte dalla metafora (nominale, verbale, aggettivale).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il tumore al seno si colloca al primo posto per livello di mortalità tra le patologie tumorali che colpiscono la popolazione femminile mondiale. Diversi studi clinici hanno dimostrato come la diagnosi da parte del radiologo possa essere aiutata e migliorata dai sistemi di Computer Aided Detection (CAD). A causa della grande variabilità di forma e dimensioni delle masse tumorali e della somiglianza di queste con i tessuti che le ospitano, la loro ricerca automatizzata è un problema estremamente complicato. Un sistema di CAD è generalmente composto da due livelli di classificazione: la detection, responsabile dell’individuazione delle regioni sospette presenti sul mammogramma (ROI) e quindi dell’eliminazione preventiva delle zone non a rischio; la classificazione vera e propria (classification) delle ROI in masse e tessuto sano. Lo scopo principale di questa tesi è lo studio di nuove metodologie di detection che possano migliorare le prestazioni ottenute con le tecniche tradizionali. Si considera la detection come un problema di apprendimento supervisionato e lo si affronta mediante le Convolutional Neural Networks (CNN), un algoritmo appartenente al deep learning, nuova branca del machine learning. Le CNN si ispirano alle scoperte di Hubel e Wiesel riguardanti due tipi base di cellule identificate nella corteccia visiva dei gatti: le cellule semplici (S), che rispondono a stimoli simili ai bordi, e le cellule complesse (C) che sono localmente invarianti all’esatta posizione dello stimolo. In analogia con la corteccia visiva, le CNN utilizzano un’architettura profonda caratterizzata da strati che eseguono sulle immagini, alternativamente, operazioni di convoluzione e subsampling. Le CNN, che hanno un input bidimensionale, vengono solitamente usate per problemi di classificazione e riconoscimento automatico di immagini quali oggetti, facce e loghi o per l’analisi di documenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People tend to automatically mimic facial expressions of others. If clear evidence exists on the effect of non-verbal behavior (emotion faces) on automatic facial mimicry, little is known about the role of verbal behavior (emotion language) in triggering such effects. Whereas it is well-established that political affiliation modulates facial mimicry, no evidence exists on whether this modulation passes also through verbal means. This research addressed the role of verbal behavior in triggering automatic facial effects depending on whether verbal stimuli are attributed to leaders of different political parties. Study 1 investigated the role of interpersonal verbs, referring to positive and negative emotion expressions and encoding them at different levels of abstraction, in triggering corresponding facial muscle activation in a reader. Study 2 examined the role of verbs expressing positive and negative emotional behaviors of political leaders in modulating automatic facial effects depending on the matched or mismatched political affiliation of participants and politicians of left-and right-wing. Study 3 examined whether verbs expressing happiness displays of ingroup politicians induce a more sincere smile (Duchenne) pattern among readers of same political affiliation relative to happiness expressions of outgroup politicians. Results showed that verbs encoding facial actions at different levels of abstraction elicited differential facial muscle activity (Study 1). Furthermore, political affiliation significantly modulated facial activation triggered by emotion verbs as participants showed more congruent and enhanced facial activity towards ingroup politicians’ smiles and frowns compared to those of outgroup politicians (Study 2). Participants facially responded with a more sincere smile pattern towards verbs expressing smiles of ingroup compared to outgroup politicians (Study 3). Altogether, results showed that the role of political affiliation in modulating automatic facial effects passes also through verbal channels and is revealed at a fine-grained level by inducing quantitative and qualitative differences in automatic facial reactions of readers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi vengono valutati gli effetti sui modelli di regressione lineare da parte di troncature deterministiche dei dati analizzati, e viene proposto un metodo alternativo per effettuare queste regressioni, che rimuova queste distorsioni. In particolare vengono discussi questi effetti nel campo della ricerca biologica, come nel progetto Mark-Age. Il progetto Mark-Age ha come obiettivo quello di ottenere un set di biomarcatori per l'invecchiamento, attraverso l'uso di metodi di data learning in analisi di tipo trasversale; elaborando cioè diverse variabili misurate sulle popolazioni esaminate riguardanti più sistemi fisiologici contemporaneamente e senza escludere interazioni locali fra queste. E' necessario tenere conto in queste analisi che questi dati sono deterministicamente troncati per via dei criteri di selezione sull’età dei partecipanti, e che questo ha un effetto rilevante sui metodi di analisi standard, i quali invece ipotizzano che non vi sarebbe alcuna relazione fra l’assenza di un dato ed il suo valore, se questo fosse misurato. In questa tesi vengono studiati gli effetti di questa troncatura sia per quanto riguarda la selezione di modelli ottimali, che della stima dei parametri per questi modelli. Vengono studiati e caratterizzati questi effetti nell'ambito di un toy model, che permette di quantificare la distorsione e la perdita di potenza dovuta alla troncatura. Viene inoltre introdotto un appropriato metodo di regressione, chiamato Tobit, che tenga conto di questi effetti. Questo metodo viene infine applicato ad un sottoinsieme dati del progetto Mark-Age, dimostrando una notevole riduzione del bias di predizione, ottenendo anche una stima della precisione di queste predizioni.