993 resultados para Microstructure fabrication
Resumo:
A kind of hydrogenated diphasic silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) near the phase transition regime from amorphous to nanocrystalline. The microstructural properties of the films have been investigated by the micro-Raman and Fourier transformed Infrared (FT-IR) spectra and atom force microscopy (AFM). The obtained Raman spectra show not only the existence of nanoscaled crystallites, but also a notable improvement in the medium-range order of the diphasic films. For the FT-IR spectra of this kind of films, it notes that there is a blueshift in the Si-H stretching mode and a redshift in the Si-H wagging mode in respect to that of typical amorphous silicon film. We discussed the reasons responsible for these phenomena by means of the phase transition, which lead to the formation of a diatomic hydrogen complex, H-2* and their congeries.
Resumo:
Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.
Resumo:
A novel silicon-on-reflector substrate for Si-based resonant-cavity-enhanced photodetectors has been fabricated by using Si-based sol-gel and smart-cut techniques. The Si/SiO2 Bragg reflector is controlled in situ by electron beam evaporation and the thickness can be adjusted to get high reflectivity. The reflectance spectra of the silicon-on-reflector substrate with five pairs of Si/SiO2 reflector have been measured and simulated by transfer matrix model. The reflectivity at operating wavelength is close to 100%. Based on the silicon-on-reflector substrate, SiGe/Si multiple quantum wells resonant-cavity-enhanced photodetectors for 1.3 mu m wavelength have been designed and simulated. Ten-fold enhancement of the quantum efficiency of resonant-cavity-enhanced photodetectors compared with conventional photodetectors is predicted.
Resumo:
We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of A1As layer that is grown by MBE form the Ultra-Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage V-s, sufficient incident light can switch OMIST from high impedance low current"off"state to low impedance high current "on"state. The absorbing material of OMIST is GaAs, so if the wavelength of incident light within 600 similar to 850nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.
Resumo:
In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.
Resumo:
Photoluminescence (PL) from Er-implanted hydrogenated amorphous silicon suboxide (a-SiOX:H
Resumo:
A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.
Resumo:
Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes the design and fabrication process of a two-dimensional GaAs-based photonic crystal nanocavity with InAs quantum dots (QDs) emitters and analyzes the optical characteristics of cavity modes at room temperature. The micro-luminescence spectrum recorded from the nanocavities exhibits a narrow optical transition at the lowest order resonance wavelength of about 1137 nm with about 1 nm emission linewidth. In addition, the spectra of photonic crystal nanocavities processed under different etching conditions show that the verticality of air hole sidewall is an important factor determing the luminescence characteristics of photonic crystal nanocaivties. Finally,,the variance of resonant modes is also discussed as a function of r/a ratio and will be used in techniques aimed at improving the probability of achieving spectral coupling of a single QD to a cavity mode.