896 resultados para Microcirculation dysfunction
Resumo:
Endurance-trained athletes experience a low level of postprandial lipaemia, but this rapidly increases with detraining. We sought to determine whether detraining-induced changes to postprandial metabolism influenced endothelial function and inflammation. Eight endurance-trained men each undertook two oral fat tolerance tests [blood taken fasted and for 6 h following a high-fat test meal (80 g fat, 80 g carbohydrate)]: one during a period of their normal training (trained) and one after 1 wk of no exercise (detrained). Endothelial function in the cutaneous microcirculation was assessed using laser Doppler imaging with iontophoresis in the fasted state and 4 h postprandially during each test. Fasting plasma triglyceride (TG) concentrations increased by 35% with detraining (P = 0.002), as did postprandial plasma (by 53%, P = 0.002), chylomicron (by 68%, P = 0.02) and very low-density lipoprotein (by 51%, P = 0.005) TG concentrations. Endothelial function decreased postprandially in both the trained (by 17%, P = 0.03) and detrained (by 22%, P = 0.03) conditions but did not differ significantly between the trained and detrained conditions in either the fasted or the postprandial states. These results suggest that, although fat ingestion induces endothelial dysfunction, interventions that alter postprandial TG metabolism will not necessarily concomitantly influence endothelial function.
Resumo:
OBJECTIVES: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis. BACKGROUND: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction. METHODS: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis. RESULTS: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers. CONCLUSIONS: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.
Resumo:
Cerebral vascular dysregulation has been increasingly implicated as a risk factor in the development of Alzheimer disease (AD)1; however, because of the difficulties associated with assessing and visualizing the cerebral vasculature directly, the ability to detect such dysregulation, noninvasively, is currently limited.2 Consequently, one concept that is being increasingly explored is the possibility of using the eye as a "window to the brain"; this approach has reasonable scientific validity as the retinal and brain vessels share a large number of embryological, anatomic, and functional similarities.2 Indeed, previous research has demonstrated a correlation between cognition and the geometry of the retinal vessels in elderly people.3 The aim of this pilot study, therefore, was to explore whether microvascular functional anomalies are evident at the retinal level in mild AD patients and to determine whether these anomalies relate to the degree of concurrent cognitive deficit..
Resumo:
Endothelial dysfunction (EDF) reflects pathophysiologicalchanges in the phenotype and functions of endothelial cells that result fromand/or contribute to a plethora of cardiovascular diseases. We review the roleof hydrogen sulfide (H2S) in the pathogenesis of EDF, one of thefastest advancing research topics. Conventionally treated as an environmentpollutant, H2S is also produced in endothelial cells and participatesin the fine regulation of endothelial integrity and functions. Disturbed H2Sbioavailability has been suggested to be a novel indicator of EDF progress andprognosis. EDF manifests in different forms in multiple pathologies, buttherapeutics aimed at remedying altered H2S bioavailability maybenefit all.
Resumo:
The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^
Resumo:
Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.
Resumo:
Prostate cancer, the leading cause of cancer in men, has positive survival rates and constitutes a challenge to men with its side effects. Studies have addressed the bivaritate relationships between prostate cancer treatment side effects masculinity, partner relationship, and quality of life (QOL). However, few studies have highlighted the relationships among prostate cancer treatment side effects (i.e., sexual dysfunction, urinary incontinence), masculinity, and relationship with the partner together on QOL in men. Most studies were conducted with predominately Caucasian sample of men. Miami is a unique multiethnic setting that hosts Cuban, Columbian, Venezuelan, Haitian, other Latin American and Caribbean communities that were not represented in previous literature. The purpose of this study was to examine relative contributions of age, ethnicity, sexual dysfunction, urinary incontinence, masculinity, and perception of the relationship with the partner on the quality of life in men diagnosed with prostate cancer. Data were collected using self administered questionnaires measuring demographic variables, sexual and urinary functioning (UCLA PCI), masculinity (CMNI), partner relationship (DAS), and QOL (SF-36). A total of 117 partnered heterosexual men diagnosed with prostate cancer were recruited from four urology clinics in Miami, Florida. Men were 67.47 (SD = 8.42) years old and identified themselves to be of Hispanic origin (54.3 %, n = 63). Findings demonstrated that there was a significant moderate negative relationship between urinary and sexual functioning of men. There was a significant strong negative association between men's perceived relationship with partner and masculinity. There was a weak negative relationship between the partner relationship and QOL. Hierarchal multiple regression showed that the partner relationship (β = -.25, t (91) = -2.28, p = .03) significantly contributed overall to QOL. These findings highlight the importance of the relationship satisfaction in the QOL of men with prostate cancer. Nursing interventions to enhance QOL for these men should consider strengthening the relationship and involving the female partner as an active participant.^
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
Background: Patients with autoimmune disease have increased incidence of stroke. Hemorrhagic stroke (HS) is associated with loss of cerebrovascular function, leading to micro-vessel burst, and hemorrhage. We believe chronic inflammation is involved in loss of cerebrovascular function and HS. We established a hypertensive-arthritis model in spontaneously hypertensive rats (SHR) fed either standard rodent diet (0.59% NaCl) (RD) or high salt diet (4% NaCl) (HSD) and compared them to non-inflamed SHR. Methods: Complete Freund’s adjuvant (CFA) was injected into the left paw to induce mono-arthritis. Blood pressure and inflammation was monitored. At endpoint, animals were sacrificed and evaluated for HS while middle cerebral artery (MCA) was isolated for functional studies. Results: HS was observed in 90% of CFA-treated groups. The MCA of arthritic RD-SHR exhibited decreased ability to undergo pressure dependent constriction (PDC). All HSD-SHR showed a decreased response to PDC. However, arthritic HSD-SHR also demonstrated a diminished response to vasoactive peptides. Conclusion: HS occurring with CFA injection corresponds with loss of MCA function. Chronic HSD appears to further exacerbate vascular dysfunction in the MCA.
Resumo:
Acknowledgements This project was also supported by Marie Curie International Reintegration Grant 249156 (A. Lionikas) and the grants VP1-3.1-SMM-01-V-02-003 (A. Kilikevicius) and MIP-067/2012 (T. Venckunas) from the Research Council of Lithuania as well as the grant from the Ministry of Higher Education of Saudi Arabia (Y. Alhind). We wish also to thank Mrs Indre Libnickiene for her excellent technical assistance provided during the project
Resumo:
Acknowledgements This project was also supported by Marie Curie International Reintegration Grant 249156 (A. Lionikas) and the grants VP1-3.1-SMM-01-V-02-003 (A. Kilikevicius) and MIP-067/2012 (T. Venckunas) from the Research Council of Lithuania as well as the grant from the Ministry of Higher Education of Saudi Arabia (Y. Alhind). We wish also to thank Mrs Indre Libnickiene for her excellent technical assistance provided during the project
Resumo:
Purpose: The exact nature of the relationship between Alzheimer’s disease (AD) and primary open angle glaucoma (POAG) is still the subject of debate. One factor attributed to the aetiology of both conditions is vascular dysfunction. This study aimed to investigate the similarities and differences in retinal microvascular function between mild AD patients, early stage POAG patients and healthy controls Methods: Retinal vessel reactivity to flickering light was assessed in 10 AD, 19 POAG and 22 healthy age matched control patients by means of dynamic retinal vessel analysis (DVA, IMEDOS, GmbH, Jena, Germany) according to an established protocol. All patients additionally underwent BP measurements and blood analysis for glucose and lipid metabolism markers Results: AD and POAG patients demonstrated comparable alterations in retinal artery reactivity, in the form of an increased arterial reaction time (RT) to flicker light on the final flicker cycle (p=0.014), which was not replicated in the healthy age and cardiovascular risk matched controls (p>0.05). Furthermore, the sequential changes in RT on progressing from flicker one to flicker three were found to differ between healthy controls and the two disease groups (p=0.001) Conclusions: AD and POAG patients demonstrate comparable signs of vascular dysfunction in their retinal arteries at the early stages of their disease process. These comparable signs may reflect similarities in the pathophysiological processes that occur in the development of both conditions
Resumo:
The aim of this present study was to investigate if overweight individuals exhibit signs of vascular dysfunction associated with a high risk for cardiovascular disease (CVD). One hundred lean and 100 overweight participants were recruited for the present study. Retinal microvascular function was assessed using the Dynamic Retinal Vessel Analyser (DVA), and systemic macrovascular function by means of flow-mediated dilation (FMD). Investigations also included body composition, carotid intimal-media thickness (c-IMT), ambulatory blood pressure monitoring (BP), fasting plasma glucose, triglycerides (TG), cholesterol levels (HDL-C and LDL-C), and plasma von Willebrand factor (vWF). Overweight individuals presented with higher right and left c-IMT (p = 0.005 and p = 0.002, respectively), average 24-h BP values (all p <0.001), plasma glucose (p = 0.008), TG (p = 0.003), TG: HDL-C ratio (p = 0.010), and vWF levels (p = 0.004). Moreover, overweight individuals showed lower retinal arterial microvascular dilation (p = 0.039) and baseline-corrected flicker (bFR) responses (p = 0.022), as well as, prolonged dilation reaction time (RT, p = 0.047). These observations emphasise the importance of vascular screening and consideration of preventive interventions to decrease vascular risk in all individuals with adiposity above normal range.