961 resultados para Membrane-protein-1
Resumo:
Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
Resumo:
LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL32(21-272), which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL32(21-272) crystals diffracted to 2.25 angstrom resolution at a synchrotron source. The space group was P3(1)21 or P3(2)21 and the unit-cell parameters were a = b = 126.7, c = 96.0 angstrom.
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
In this study we investigated the gene expression of proteins related to myostatin (MSTN) signaling during skeletal muscle longitudinal growth. To promote muscle growth, Wistar male rats were submitted to a stretching protocol for different durations (12, 24, 48, and 96 hours). Following this protocol, soleus weight and length and sarcomere number were determined. In addition, expression levels of the genes that encode MSTN, follistatin isoforms 288 and 315 (FLST288 and FLST315), follistatin-like 3 protein (FLST-L3), growth and differentiation factor-associated protein-1 (GASP-1), activin IIB receptor (ActIIB), and SMAD-7 were determined by real-time polymerase chain reaction. Prolonged stretching increased soleus weight, length, and sarcomere number. In addition, MSTN gene expression was increased at 12-24 hours, followed by a decrease at 96 hours when compared with baseline values. FLST isoforms, FLST-L3, and GASP-1 mRNA levels increased significantly over all time-points. ActIIB gene expression decreased quickly at 12-24 hours. SMAD-7 mRNA levels showed a late increase at 48 hours, which peaked at 96 hours. The gene expression pattern of inhibitory proteins related to MSTN signaling suggests a strong downregulation of this pathway in response to prolonged stretching. Muscle Nerve 40: 992-999, 2009
Resumo:
Citrus black spot (CBS) caused by Guignardia citricarpa represents an important threat to citriculture in Brazil. Limited information is available regarding potential biological control agents and new alternative compounds that may provide protection of orange fruits against the disease. In this study, the effects of commercial products based on Bacillus thuringiensis var. kurstaki (Bt) bacterium, Bt pure isolates and Harpin protein (Messenger (R)) on the postharvest control of CBS, were evaluated in `Valencia` sweet orange fruits harvested for three consecutive years in a citrus grove. The fruits were sprayed with the following products: DiPel (R) WP (Bt, subspecies, kurstaki strain HD-1,16,000 International Units mg(-1), 32 g active ingredient kg(-1)) (1, 20 and 50 mg ml(-1)), Dimy Pel (R) WP (Bt, subspecies, kurstaki, strain HD-1, 17,600 IU mg(-1), 26 g active ingredient l(-1)) (2, 20 and 50 mg ml(-1)), Messenger (R) (3% harpin protein) (1 and 2 mg ml(-1)) and fungicide Tecto (R) Flowable SC (thiabendazole, 485 gl(-1)) (0.8g active ingredient l(-1)), besides the Bt isolates, Bt- HD-567, Bt- DiPel and Bt- Dimy (9 x 10(8) CFU ml(-1)). Ten days after treatment, the number of newly developed CBS lesions and pycnidia produced were evaluated using fifty fruits per treatment. The Dimy Pel (R) and Messenger (R) reduced the number of new developed CBS lesions on fruits in up to 67% and 62%, respectively. All applied treatments drastically decreased the number of pycnidia produced in the CBS lesions on orange fruits with 85% to 96% reductions compared to the untreated control. Volatile compounds produced by the isolates Bt- HD-567, Bt- Dimy and Bt- DiPel, reduced the number of lesions on treated fruits by 70%, 65% and 71% compared to the control, respectively. In addition, the survival of Bt isolates on orange fruit surfaces were evaluated by recovering and quantifying the number of CFU every seven days for up to 28 days. The declines in survival rates on orange fruit surfaces were drastic for the three strains of Bt in the first week. The CFU numbers of all applied isolates declined by 4 to 5 orders of magnitude after storage at room temperature for 28 days. In vitro assays revealed that the Bt isolates significantly reduced the mycelial growth of the pathogen, ranging from 32% to 51%, compared to the control, whereas no inhibitory effect was observed in the presence of Messenger (R). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: The transcription factors SREBP1 and SCAP are involved in intracellular cholesterol homeostasis. Polymorphisms of these genes have been associated with variations on serum lipid levels and response to statins that are potent cholesterol-lowering drugs. We evaluated the effects of atorvastatin on SREBF1a and SCAP mRNA expression in peripheral blood mononuclear cells (PBMC) and a possible association with gene polymorphisms and lowering-cholesterol response. Methods: Fifty-nine hypercholesterolemic patients were treated with atorvastatin (10 mg/day for 4 weeks). Serum lipid profile and mRNA expression in PBMC were assessed before and after the treatment. Gene expression was quantified by real-time PCR using GAPD as endogenous reference and mRNA expression in HepG2 cells as calibrator. SREBF1 -36delG and SCAP A2386G polymorphisms were detected by PCR-RFLP. Results: Our results showed that transcription of SREBF1a and SCAP was coordinately regulated by atorvastatin (r=0.595, p<0.001), and that reduction in SCAP transcription was associated with the 2386AA genotype (p=0.019). Individuals who responded to atorvastatin with a downregulation of SCAP had also a lower triglyceride compared to those who responded to atorvastatin with an upregulation of SCAP. Conclusion: Atorvastatin has differential effects on SREBF1a and SCAP mRNA expression in PBMC that are associated with baseline transcription levels, triglycerides response to atorvastatin and SCAP A2386G polymorphism. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin`s surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Resumo:
Homocysteine is an independent risk factor for coronary heart disease, as well as for cerebrovascular and peripheral vascular diseases. The purpose of this study was to investigate the effects of hyperhomocysteinemia (HHcy) on vascular reactivity within carotid artery segments isolated from ovariectomized female rats. Treatment with dl-Hcy thiolactone (1 g/kg body weight per day) reduced the phenylephrine-induced contraction of denuded rings. However, the treatment did not alter KCl-induced contractions, or relaxations induced by sodium nitroprusside or acetylcholine. We report elevated expressions of iNOS, eNOS, and nitrotyrosine in homocysteine-treated rat artery sections. Moreover, the inhibition of NOS by l-NAME, 1,400 W, or l-NNA restored phenylephrine-induced vasoconstriction in carotid artery segments from Hcy-treated rats. In conclusion, our findings show that severe HHCy can promote an acute decrease in the endothelium-independent contractile responses of carotid arteries to adrenergic agonists. This effect was restored by nitric oxide synthase inhibitors, which further supports the involvement of nitric oxide in HHcy-derived vascular dysfunction.
Resumo:
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor beta superfamily, especially BMP-2, induce bone formation in vivo, and clinical application in repair of bone fractures and defects is expected. However, appropriate systems to delivery BMPs for practical use need to be developed with the objective to heal cartilage and bone-related diseases in medical, dental and veterinary practice. Thus, the aim of this article was to present an overview of the principals carriers used to delivery BMPs and alternative delivery systems for these proteins.
Resumo:
Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Budlein A has been reported to exert some analgesic and anti-inflammatory properties. In this study, we have evaluated its effect on LPS-induced leukocyte recruitment in vivo and the mechanisms involved in its anti-inflammatory activity. In vivo, intravital videomicroscopy was used to determine the effects of budlein A on LPS-induced leukocyte-endothelial cell interactions in the murine cremasteric microcirculation. In vitro, the effects of budlein A on LPS-induced cytokine, chemokine and nitrites release, T-cell proliferative response as well as cell adhesion molecule expression (CAM) were evaluated. In vivo, intraperitoneal administration of budlein A (2.6 mM/kg) caused a significant reduction of LPS-induced leukocyte rolling flux, adhesion and emigration by 84, 92 and 96% respectively. In vitro, T-cell proliferative response was also affected by budlein A. When murine J774 macrophages were incubated with the sesquiterpene lactone, LPS-induced IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and keratinocyte-derived chemokine (KC) release were concentration-dependently inhibited. In human umbilical vein endothelial cells (HUVECs), budlein A also reduced the production of TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), IL-8, nitrites and CAM expression elicited by LPS. Budlein A is a potent inhibitor of LPS-induced leukocyte accumulation in vivo. This effect appears to be mediated through inhibition of cytokine and chemokine release and down-regulation of CAM expression. Thus, it has potential therapeutic interest for the control of leukocyte recruitment that occurs in different inflammatory disorders. (C) 2009 Elsevier GrnbH. All rights reserved.
Resumo:
Neutrophil infiltration is a feature of alcoholic hepatitis (AH), and although the mechanism by which this occurs is unclear, it may involve a chemotactic gradient. We used lipopolysaccharide (LPS) to induce, in ethanol-fed rats, liver damage similar to that seen in AH. To our knowledge, this study is the first to examine the effect of ethanol on LPS-stimulated chemokine mRNA expression in this model. Hepatic cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1 beta, MIP-2, and eotaxin mRNA levels were elevated 1 to 3 hr post-LPS in both groups. Maximal expression of MIP-2 and MCP-1 mRNA was higher in ethanol-fed rats 1 hr post-LPS, whereas CINC-2 mRNA expression was elevated above controls at 12 to 24 hr. Hepatic intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 mRNA levels were elevated in both groups at 1 hr, whereas L-selectin expression in ethanol-fed rats was elevated above controls at 12 to 24 hr. Hepatic neutrophil infiltration was highest during maximal hepatocyte necrosis. These data suggest that cell adhesion molecules, in conjunction with elevated cytokines and the subsequently induced chemokines, may assist in the formation of a chemotactic gradient within the liver, causing the neutrophil infiltration seen both in this model and possibly in AH.
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
The gregarious braconid wasp Cotesia congregata parasitizes host larvae of Manduca sexta, and several other sphingid species. Parasitism induces host immunosuppression due to the disruptive action of the wasp's polydnavirus (PDV) on host blood cells. During the initial stages of parasitism, these cells undergo apoptosis followed by cell clumping, which clears the hemolymph of a large number of cells. In this study, the persistence and expression of Cotesia congregata PDV (CcPDV) were examined using Southern and Nor-them blots, respectively. Digoxygenin-labelled total polydnaviral DNA was used to probe genomic DNA isolated from fat body and brains of hosts with emerged wasps taken 6 days following egress of the parasitoids, and significant cross-hybridization between the host fat body genomic DNA with viral DNA was seen. Thus, the virus persists in the host for the duration of parasitism. even during the post-emergence period, and may even be integrated in the host caterpillar DNA. Viral gene expression was examined using Northern blots and probes to the Cotesia rubecula CrV1 homolog, and the CrV1-like mRNAs were expressed as early as 4 h post-parasitization for at least 72 h and faint hybrization is even seen at the time the wasps eclose. In contrast, in Pieris rapae larvae the CrV1 transcript is expressed only for a brief time, during which time hemocyte function is disrupted. The effect is transitory, and hemocytes regain their normal functions after the parasites emerge as first instars. The genome of CcPDV contains one copy of the CrV1-like homolog as shown on Southern blots of viral genomic DNA. In conjunction with our earlier studies of the PDV-encoded early protein 1, the current work suggests multiple viral transcripts are produced following parasitization of the host. and likely target host hemocytes to induce their apoptosis, thereby preventing encapsulation of the parasitoid's eggs. Whether viral DNAs are integrated in the host's genomic DNA remains to be proven, but our results provide preliminary evidence that viral DNAs are detected in the host's fat body cells examined at the time of wasp ernergence and several days later. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Mucosal leishmaniasis (ML) follows localized cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Proinflammatory responses mediate CL self-healing but are exaggerated in ML Proinflammatory monocyte chemoattractant protein 1 (MCP-1; encoded by CCL2) is associated with CL We explore its role in CL/ML through analysis of the regulatory CCL2 -2518 bp promoter polymorphism in CL/ML population samples and families from Brazil. Genotype frequencies were compared among ML/CL cases and control groups using logistic regression and the family-based association test (FBAT). MCP-1 was measured in plasma and macrophages. The GG recessive genotype at CCL2 -2518 bp was more common in patients with ML (N = 67) than in neighborhood control (NC; N = 60) subjects (OR 1.78; 95% Cl 1.01-3.14; P = 0.045), than in NC combined with leishmanin skin-test positive (N = 60) controls (OR 4.40; 95% CI 1.42-13.65; P = 0.010), and than in controls combined with CL (N = 60) patients (OR 2.78; 95% CI 1.13-6.85; P = 0.045). No associations were observed for CL compared to any groups. FBAT (91 ML and 223 CL cases in families) confirmed recessive association of ML with allele G (Z = 2.679; P = 0.007). Higher levels of MCP-1 occurred in plasma (P = 0.03) and macrophages (P < 0.0001) from GG compared to AA individuals. These results suggest that high MCP-1 increases risk of ML (C) 2010 Elsevier B.V. All rights reserved.