994 resultados para Mechanical signal transduction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in lipid and glucose homeostasis, inflammation and wound healing. In addition to ligand binding, phosphorylation can also regulate PPARs; the biological effects of phosphorylation depend on the stimulus, the kinase, the PPAR isotype, the residue modified, the cell type and the promoter investigated. The study of this dual regulation mode, which allows PPARs to integrate signals conveyed by lipophilic ligands with those coming from the plasma membrane, may ultimately offer new therapeutic strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SummaryCanonical Wnt signaling is crucial for embryonic development and the homeostasis of certain adult tissues such as the gut and the skin. The role of canonical Wnt signaling in hematopoiesis is still debated. The expression of a dominant-active β-catenin in hematopoietic stem cells (HSCs) enhances the self-renewal capacity of HSCs but is detrimental for long-term hematopoiesis. In contrast, loss of function experiments show that absence of β- and γ-catenin does not impair steady-state hematopoiesis. It has been argued that the inducible deletion of β-catenin using the IFN-responsive Mx promoter may somehow influence stem cell fate. Herein we used the constitutive deletion of β-catenin specifically in hematopoietic cells to show that the absence of β- catenin, as well as γ-catenin deletion, does not impair normal hematopoiesis and self-renewal capacity of HSCs.Dysregulation of canonical Wnt signaling is causal for several types of cancer, including colon carcinoma or breast cancer. Recently, it was found that Wnt signal transduction was upregulated in certain leukemias. Based on these data, we have investigated whether β- and γ-catenin play a role for the induction of leukemias by oncogenic BCR-ABL translocation product. We show that the induction of B-ALL (B cell acute lymphocytic leukemia) is strongly reduced in the absence of γ-catenin, while the induction of CML (chronic myeloid leukemia) occurs at a normal rate. In the combined absence of β- and γ-catenin the induction of both CML and B-ALL is essentially blocked. Consistent with these data others have found that β-catenin is essential for the induction of CML by BCR-ABL.Collectively, we find that β- and γ-catenin are dispensable for normal hematopoiesis but essential for the development of BCR-ABL induced leukemias. These findings suggest that the canonical Wnt pathway may represent a promising target for the therapy of leukemia.RésuméLa voie de signalisation canonique Wnt est essentielle pour le développement embryonnaire ainsi que l'homéostasie de certains tissus adultes, comme les intestins et la peau. Le rôle de la voie canonique Wnt pour l'hématopoïèse est encore incertain. D'un coté l'expression d'une forme active de β-catenine dans les cellules souches de la moelle augmente leur potentiel d'auto- renouvellement mais est préjudiciable pour l'hématopoïèse à long terme. Par contre, l'absence de β- et γ-catenine n'empêche pas le déroulement normal de l'hématopoïèse. La façon dont est supprimée β-catenine, en utilisant le promoteur IFN-inductible Mx, pourrait influencer le sort des cellules souches. Ici nous détruisons β-catenine spécifiquement dans les cellules hématopoïétiques de manière constitutive et montrons que, en combinaison avec l'absence de γ-catenine, l'absence de β-catenine n'affecte pas le déroulement normal de l'hématopoïèse et la capacité des cellules souches de la moelle à se renouveler.Plusieurs sortes de cancers, comme celui du colon ou du sein, sont parfois dus à une dérégulation de la voie canonique Wnt. Récemment, certaines leucémies ont présenté une activation du signal Wnt. A partir de ces données, nous avons examiné si β- et γ-catenine jouent un rôle dans l'induction des leucémies causées par le produit de translocation BCR-ABL. Nous avons montré que l'induction de la leucémie aiguë lymphoïde de cellules Β (LAL-B) est grandement diminuée en l'absence de γ-catenin, alors que l'induction de la leucémie myéloïde chronique (LMC) n'est pas affectée. En l'absence des deux catenines, l'induction des deux leucémies LAL-B et LMC est presque complètement bloquée. En confirmation de nos données, un autre groupe a montré que β-catenine est essentielle pour le développement de la LMC. Ensemble, ces données nous montrent que β- et γ-catenine ne sont pas nécessaires pour l'hématopoïèse normale, mais essentielle pour le développement des leucémies induites par BCR-ABL. Cela suggère que la voie de signalisation canonique Wnt est une cible prometteuse pour de futures thérapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the plant-beneficial, root-colonizing strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively regulates the synthesis of biocontrol factors (mostly antifungal secondary metabolites) and contributes to oxidative stress response via the stress sigma factor RpoS. The backbone of this pathway consists of the GacS/GacA two-component system, which activates the expression of three small regulatory RNAs (RsmX, RsmY, RsmZ) and thereby counters translational repression exerted by the RsmA and RsmE proteins on target mRNAs encoding biocontrol factors. We found that the expression of typical biocontrol factors, that is, antibiotic compounds and hydrogen cyanide (involving the phlA and hcnA genes), was significantly lower at 35 degrees C than at 30 degrees C. The expression of the rpoS gene was affected in parallel. This temperature control depended on RetS, a sensor kinase acting as an antagonist of the GacS/GacA system. An additional sensor kinase, LadS, which activated the GacS/GacA system, apparently did not contribute to thermosensitivity. Mutations in gacS or gacA were epistatic to (that is, they overruled) mutations in retS or ladS for expression of the small RNAs RsmXYZ. These data are consistent with a model according to which RetS-GacS and LadS-GacS interactions shape the output of the Gac/Rsm pathway and the environmental temperature influences the RetS-GacS interaction in P. fluorescens CHA0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARβ/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARβ/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARβ/δ activation by GW501516 enhanced the physical interaction between PPARβ/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARβ/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARβ/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RIP1 and its homologs, RIP2 and RIP3, form part of a family of Ser/Thr kinases that regulate signal transduction processes leading to NF-kappa B activation. Here, we identify RIP4 (DIK/PKK) as a novel member of the RIP kinase family. RIP4 contains an N-terminal RIP-like kinase domain and a C-terminal region characterized by the presence of 11 ankyrin repeats. Overexpression of RIP4 leads to activation of NF-kappa B and JNK. Kinase inactive RIP4 or a truncated version containing the ankyrin repeats have a dominant negative (DN) effect on NF-kappa B induction by multiple stimuli. RIP4 binds to several members of the TRAF protein family, and DN versions of TRAF1, TRAF3 and TRAF6 inhibit RIP4-induced NF-kappa B activation. Moreover, RIP4 is cleaved after Asp340 and Asp378 during Fas-induced apoptosis. These data suggest that RIP4 is involved in NF-kappa B and JNK signaling and that caspase-dependent processing of RIP4 may negatively regulate NF-kappa B-dependent pro-survival or pro-inflammatory signals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two-component systems (TCSs) allow bacteria to monitor diverse environmental cues and to adjust gene expression accordingly at the transcriptional level. It has been recently recognized that prokaryotes also regulate many genes and operons at a posttranscriptional level with the participation of small, noncoding RNAs which serve to control translation initiation and stability of target mRNAs, either directly by establishing antisense interactions or indirectly by antagonizing RNA-binding proteins. Interestingly, the expression of a subset of these small RNAs is regulated by TCSs and in this way, the small RNAs expand the scope of genetic control exerted by TCSs. Here we review the regulatory mechanisms and biological relevance ofa number of small RNAs under TCS control in Gram-negative and -positive bacteria. These regulatory systems govern, for instance, porin-dependent permeability of the outer membrane, quorum-sensing control of pathogenicity, or biocontrol activity. Most likely, this emerging and rapidly expanding field of molecular microbiology will provide more and more examples in the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infections by opportunistic fungi have traditionally been viewed as the gross result of a pathogenic automatism, which makes a weakened host more vulnerable to microbial insults. However, fungal sensing of a host's immune environment might render this process more elaborate than previously appreciated. Here we show that interleukin (IL)-17A binds fungal cells, thus tackling both sides of the host-pathogen interaction in experimental settings of host colonization and/or chronic infection. Global transcriptional profiling reveals that IL-17A induces artificial nutrient starvation conditions in Candida albicans, resulting in a downregulation of the target of rapamycin signalling pathway and in an increase in autophagic responses and intracellular cAMP. The augmented adhesion and filamentous growth, also observed with Aspergillus fumigatus, eventually translates into enhanced biofilm formation and resistance to local antifungal defenses. This might exemplify a mechanism whereby fungi have evolved a means of sensing host immunity to ensure their own persistence in an immunologically dynamic environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical sensing begins when peripheral receptor proteins recognise specific environmental stimuli and translate them into spatial and temporal patterns of sensory neuron activity. The chemosensory system of the fruit fly, Drosophila melanogaster, has become a dominant model to understand this process, through its accessibility to a powerful combination of molecular, genetic and electrophysiological analysis. Recent results have revealed many surprises in the biology of peripheral chemosensation in Drosophila, including novel structural and signalling properties of the insect odorant receptors (ORs), combinatorial mechanisms of chemical recognition by the gustatory receptors (GRs), and the implication of Transient Receptor Potential (TRP) ion channels as a novel class of chemosensory receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new type of high avidity binding molecule, termed "peptabody" was created by harnessing the effect of multivalent interaction. A short peptide ligand was fused via a semi-rigid hinge region with the coiled-coil assembly domain of the cartilage oligomeric matrix protein, resulting in a pentameric multivalent binding molecule. In the first peptabody (Pab-S) described here, a peptide (S) specific for the mouse B-cell lymphoma BCL1 surface Ig idiotype, was selected from a phage display library. A fusion gene was constructed encoding peptide S, followed by the 24 aa hinge region from camel IgG and a modified 55 aa cartilage oligomeric matrix protein pentamerization domain. The Pab-S fusion protein was expressed in Escherichia coli in a soluble form at high levels and purified in a single step by metal-affinity chromatography. Pab-S specifically bound the BCL1 surface idiotype with an avidity of about 1 nM, which corresponds to a 2 x 10(5)-fold increase compared with the affinity of the synthetic peptide S itself. Biochemical characterization showed that Pab-S is a stable homopentamer of about 85 kDa, with interchain disulfide bonds. Pab-S can be dissociated under denaturing and reducing conditions and reassociated as a pentamer with full-binding activity. This intrinsic feature provides an easy way to combine Pab molecules with two different peptide specificities, thus producing heteropentamers with bispecific and/or chelating properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We previously reported that pancreatic islet beta-cells from GLUT2-null mice lost the first phase but preserved the second phase of glucose-stimulated insulin secretion (GSIS). Furthermore, we showed that the remaining secretory activity required glucose uptake and metabolism because it can be blocked by inhibition of oxidative phosphorylation. Here, we extend these previous studies by analyzing, in GLUT2-null islets, glucose transporter isoforms and glucokinase expression and by measuring glucose usage, GSIS, and glucose-stimulated insulin mRNA biosynthesis. We show that in the absence of GLUT2, no compensatory expression of either GLUT1 or GLUT3 is observed and that glucokinase is expressed at normal levels. Glucose usage by isolated islets was increased between 1 and 6 mmol/l glucose but was not further increased between 6 and 20 mmol/l glucose. Parallel GSIS measurements showed that insulin secretion was not stimulated between 2.8 and 6 mmol/l glucose but was increased by >4-fold between 6 and 20 mmol/l glucose. Stimulation by glucose of total protein and insulin biosynthesis was also markedly impaired in the absence of GLUT2. Finally, we re-expressed GLUT2 in GLUT2-null beta-cells using recombinant lentiviruses and demonstrated a restoration of normal GSIS. Together, these data show that in the absence of GLUT2, glucose can still be taken up by beta-cells, albeit at a low rate, and that this transport activity is unlikely to be attributed to GLUT1 or GLUT3. This uptake activity, however, is limiting for normal glucose utilization and signaling to secretion and translation. These data further demonstrate the key role of GLUT2 in murine beta-cells for glucose signaling to insulin secretion and biosynthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of Notch signaling in growth/differentiation control of mammalian epithelial cells is still poorly defined. We show that keratinocyte-specific deletion of the Notch1 gene results in marked epidermal hyperplasia and deregulated expression of multiple differentiation markers. In differentiating primary keratinocytes in vitro endogenous Notch1 is required for induction of p21WAF1/Cip1 expression, and activated Notch1 causes growth suppression by inducing p21WAF1/Cip1 expression. Activated Notch1 also induces expression of 'early' differentiation markers, while suppressing the late markers. Induction of p21WAF1/Cip1 expression and early differentiation markers occur through two different mechanisms. The RBP-Jkappa protein binds directly to the endogenous p21 promoter and p21 expression is induced specifically by activated Notch1 through RBP-Jkappa-dependent transcription. Expression of early differentiation markers is RBP-Jkappa-independent and can be induced by both activated Notch1 and Notch2, as well as the highly conserved ankyrin repeat domain of the Notch1 cytoplasmic region. Thus, Notch signaling triggers two distinct pathways leading to keratinocyte growth arrest and differentiation.