950 resultados para Maxima and minima
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Ed. lit. tomado de prelim. de T. I: "Philippus Despont"
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: A.M. Hue.
Resumo:
Primates have X chromosome genes for cone photopigments with sensitivity maxima from 535 to 562 nm. Old World monkeys and apes (catarrhines) and the New World ( platyrrhine) genus Alouatta have separate genes for 535-nm ( medium wavelength; M) and 562-nm ( long wavelength; L) pigments. These pigments, together with a 425-nm ( short wavelength) pigment, permit trichromatic color vision. Other platyrrhines and prosimians have a single X chromosome gene but often with alleles for two or three M/L photopigments. Consequently, heterozygote females are trichromats, but males and homozygote females are dichromats. The criteria that affect the evolution of M/L alleles and maintain genetic polymorphism remain a puzzle, but selection for finding food may be important. We compare different types of color vision for detecting more than 100 plant species consumed by tamarins ( Saguinus spp.) in Peru. There is evidence that both frequency-dependent selection on homozygotes and heterozygote advantage favor M/L polymorphism and that trichromatic color vision is most advantageous in dim light. Also, whereas the 562-nm allele is present in all species, the occurrence of 535- to 556-nm alleles varies between species. This variation probably arises because trichromatic color vision favors widely separated pigments and equal frequencies of 535/543- and 562-nm alleles, whereas in dichromats, long-wavelength pigment alleles are fitter.
Resumo:
The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.