936 resultados para Material flow systems
Resumo:
Background. Intravenous injection of contrast material is routinely performed in order to differentiate nonaerated lung parenchyma from pleural effusion in critically ill patients undergoing thoracic computed tomography (CT). The aim of the present study was to evaluate the effects of contrast material on CT measurement of lung volumes in 14 patients with acute lung injury. Method. A spiral thoracic CT scan, consisting of contiguous axial sections of 10 mm thickness, was performed from the apex to the diaphragm at end-expiration both before and 30 s (group 1; n=7) or 15 min (group 2; n=7) after injection of 80 ml contrast material. Volumes of gas and tissue, and volumic distribution of CT attenuations were measured before and after injection using specially designed software (Lungview®; Institut National des Télécommunications, Evry, France). The maximal artifactual increase in lung tissue resulting from a hypothetical leakage within the lung of the 80 ml contrast material was calculated. Results. Injection of contrast material significantly increased the apparent volume of lung tissue by 83 ± 57 ml in group 1 and 102 ± 80 ml in group 2, whereas the corresponding maximal artifactual increases in lung tissue were 42 ± 52 ml and 31 ± 18 ml. Conclusion. Because systematic injection of contrast material increases the amount of extravascular lung water in patients with acute lung injury, it seems prudent to avoid this procedure in critically ill patients undergoing a thoracic CT scan and to reserve its use for specific indications.
Resumo:
Purpose: The aim of this study was to evaluate the surface roughness of four packable composite resins, SureFil™ (Dentsply, Petrópolis, Rio de Janeiro, Brazil), Prodigy Condensable™ (Kerr Co., Orange, CA, USA), Filtek P60™ (3M do Brasil, São Paulo, Brazil), and ALERT® (Jeneric/Pentron, Inc., Wallingford, CT, USA) and one microhybrid composite resin (Filtek Z250™, 3M do Brasil) after polishing with four finishing systems. Materials and Methods: Twenty specimens were made of each material (5 mm in diameter and 4 mm high) and were analyzed with a profilometer (Perthometer® S8P, Perthen, Mahr, Germany) to measure the mean surface roughness (Ra). The specimens were then divided into four groups according to the polishing system: group 1 - Sof-Lex™ (3M do Brasil), group 2 - Enhance™ (Dentsply), group 3 - Composite Finishing Kit (KG Sorensen, Barueri, São Paulo, Brazil), and group 4 - Jiffy Polisher Cups® (Ultradent Products, Inc., South Jordan, UT, USA). The specimens were polished and then evaluated for Ra, and the data were subjected to analysis of variance, analysis of covariance, and Tukey's test (p = .05). Results: The mean Ra of SureFil polished with Sof-Lex was significantly lower than that of KG points. Prodigy Condensable polished with Enhance showed a significantly less rough surface than when polished with Sof-Lex. Filtek P60 did not exhibit a significant difference with the various polishing systems. For ALERT the lowest mean Ra was obtained with Sof-Lex and the highest mean Ra with KG points. Regarding Filtek Z250, polishing with KG and Jiffy points resulted in a significantly lower mean Ra than when polished with Enhance. Conclusions: Packable composite resins display variable roughness depending on the polishing system used; the Sof-Lex disks and Jiffy points resulted in the best Ra values for the majority of the materials tested.
Resumo:
We have recently proposed an extension to Petri nets in order to be able to directly deal with all aspects of embedded digital systems. This extension is meant to be used as an internal model of our co-design environment. After analyzing relevant related work, and presenting a short introduction to our extension as a background material, we describe the details of the timing model we use in our approach, which is mainly based in Merlin's time model. We conclude the paper by discussing an example of its usage. © 2004 IEEE.
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Resumo:
Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.
Resumo:
Distribution systems with distributed generation require new analysis methods since networks are not longer passive. Two of the main problems in this new scenario are the network reconfiguration and the loss allocation. This work presents a distribution systems graphic simulator, developed with reconfiguration functions and a special focus on loss allocation, both considering the presence of distributed generation. This simulator uses a fast and robust power flow algorithm based on the current summation backward-forward technique. Reconfiguration problem is solved through a heuristic methodology and the losses allocation function, based on the Zbus method, is presented as an attached result for each obtained configuration. Results are presented and discussed, remarking the easiness of analysis through the graphic simulator as an excellent tool for planning and operation engineers, and very useful for training. © 2004 IEEE.
Resumo:
The aim of this work is to characterize a metallic slurry (Al-4.5%Cu) flow during thixoforming of an automotive valve. The necessary globular structure was obtained by first inoculating the alloy with TIBAL (5%Ti, 1%B, Al - rest) at 750.0°C, and then reheating to a state between liquidus and solidus prior to thixoforming. Two metallic slurries, with a solid phase of approximately 86.1 and 78.2 percent, were used to generate different experimental flow patterns during the thixoforming process. The flow of the material into the die was observed for total, and partial displacement (2.7, 5.4, 7.5mm) of the punch. The first displacement shows formation of the valve rod. The patterns at each step of displacement of the punch were preserved by quenching in water, thus revealing the profile of the die fill and microstructural evolution. Degeneration of the globular phase was observed along the piece thixoextruded. Thixoextrusion forces versus time curves were generated for partial and full displacement of the punch. Porosity was visible along the billet prior to thixoforming. However, some areas show that the porosity gradually decreased to zero as the thixoextrusion pressure increased. Turbulent, transient and laminar flow are analyzed in this work.
Resumo:
Objectives: The purpose of the this study was to evaluate the influence of thermocycling on shear bond strength on bovine enamel and dentin surfaces of different adhesive systems. Methods: Thirty sound bovine incisors were sectioned in mesiodistal and inciso-cervical direction obtaining 60 incisal surfaces (enamel) and 60 cervical surfaces (dentin). Specimens were randomly assigned to 3 groups of equal size (n = 40), according to the adhesive system used: I-Single Bond; II-Prime & Bond NT/NRC; III-One Coat Bond. After 24-h storage in distilled water at 37 o C, each main group was divided into two subgroups: A- specimens tested after 24 h storage in distilled water at 37°C; B - specimens submitted to thermocycling (500 cycles). Shear bond strength tests were performed. Data were submitted to ANOVA and Tukey test. Results: Means (MPa) of different groups were: I-AE-16.96, AD-17.46; BE-21.60, BD-12.79; II-AE-17.20, AD-11.93; BE-20.67, BD-13.94; III-AE-25.66, AD-17.53; BE-24.20, BD-19.38. Significance: Thermocycling did not influence significantly the shear bond strength of the tested adhesive systems; enamel was the dental substrate that showed larger adhesive strength; One Coat Bond system showed the best adhesive strength averages regardless of substrate or thermocycling. © 2005 Springer Science + Business Media, Inc.
Resumo:
Low flexibility and reliability in the operation of radial distribution networks make those systems be constructed with extra equipment as sectionalising switches in order to reconfigure the network, so the operation quality of the network can be improved. Thus, sectionalising switches are used for fault isolation and for configuration management (reconfiguration). Moreover, distribution systems are being impacted by the increasing insertion of distributed generators. Hence, distributed generation became one of the relevant parameters in the evaluation of systems reconfiguration. Distributed generation may affect distribution networks operation in various ways, causing noticeable impacts depending on its location. Thus, the loss allocation problem becomes more important considering the possibility of open access to the distribution networks. In this work, a graphic simulator for distribution networks with reconfiguration and loss allocation functions, is presented. Reconfiguration problem is solved through a heuristic methodology, using a robust power flow algorithm based on the current summation backward-forward technique, considering distributed generation. Four different loss allocation methods (Zbus, Direct Loss Coefficient, Substitution and Marginal Loss Coefficient) are implemented and compared. Results for a 32-bus medium voltage distribution network, are presented and discussed.
Resumo:
The aim of this study was to evaluate the effects of dentin surface treatments on the tensile bond strength (TBS) of the self-etching primer Clearfil SE Bond (CSE) and the one-step self-etching One-Up Bond F (OUB). The exposed flat dentin surfaces of twenty-four sound third molars were prepared with diamond bur at high-speed, carbide bur at low-speed or wet ground with #600 grit SiC paper. The adhesive systems were applied to the dentin surfaces and light-cured according to the manufacturers' instructions. A 6-mm high composite crown was incrementally built-up and each increment was light-cured for 40 seconds. After being stored in water (37°C/24 h), the samples were serially sectioned parallel to the long axis, forming beams (n = 20) with a cross-sectional area of approximately 0.8 mm 2. The specimens were tested in a Universal Testing Machine at 0.5 mm/min. The cross-sectional area was measured and the results (MPa) were analyzed by two-way ANOVA and Tukey Test (p < 0.05). Overall, the groups treated with CSE exhibited the highest TBS for all surface treatments. Dentin surfaces prepared with carbide bur at low speed reduced TBS in the CSE group; however, OUB was not affected by surface treatments. The effect of surface abrasive methods on TBS was material-dependent.
Resumo:
This paper explains why the reliability assessment of energy limited systems requires more detailed models for primary generating resources availability, internal and external generating dispatch and customer demand than the ones commonly used for large power systems and presents a methodology based on the full sequential Montecarlo simulation technique with AC power flow for their long term reliability assessment which can properly include these detailed models. By means of a real example, it is shown how the simplified modeling traditionally used for large power systems leads to pessimistic predictions if it is applied to an energy limited system and also that it cannot predict all the load point adequacy problems. © 2006 IEEE.
Resumo:
The biomagnetic technique called Alternate Current Biosusceptometry (ACB) is a proposal to evaluate a multiparticulate drug delivery system in the human gastrointestinal tract. Results show that ACB was able to quantify the gastrointestinal transit and spreading of the magnetic material and is an attractive tool for pharmaceutical research. © 2007.
Resumo:
This paper presents a new approach to the resolution of the Optimal Power Flow problem. In this approach the inequality constraints are treated by the Modified Barrier and Primal-Dual Logarithmic Barrier methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables, which are perturbed by the barrier parameter. A Lagrangian function is associated with the modified problem. The first-order necessary conditions are applied to the Lagrangian, generating a nonlinear system which is solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. Numerical tests on the Brazilian CESP and South-Southeast systems and a comparative test indicated that the new approach efficiently resolves of the Optimal Power Flow problem. © 2007 IEEE.
Resumo:
In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.
Resumo:
This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.