934 resultados para Marriage breakdown
Resumo:
Boundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. Lambda spanwise vortex appears to evolve into a Lambda/hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.
Resumo:
It is possible to prepare low‐voltage varistors from the zinc antimony spinel Zn7Sb2O12 with breakdown voltages in the range of 3–20 V and nonlinearity coefficient α=7–15. The varistor property is due to the formation of high ohmic potential barriers at the grain boundary regions on low‐ohmic n‐type grain interiors of the polycrystalline samples. The method of preparation of the spinel, synthesized by coprecipitation followed by annealing under restricted partial pressures of oxygen, controls the mixed valence states for antimony, namely, Sb3+ and Sb5+. This is critical in attaining high nonlinearity and lower breakdown voltages.
Resumo:
A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.
Resumo:
The firing characteristics of the simple triggered vacuum gap (TVG) using lead zirconate titanate as dielectric material in the triggered gap are described. This TVG has a long life of about 2000 firings without appreciable deterioration of the electrical properties for main discharge currents upto 3 kA and is much superior to these made with Supramica (Mycalex Corporation of America) and silicon carbide as used in our earlier investigations. The effects of the variation of trigger voltage, trigger curcit, trigger pulse duration, trigger pulse energy, main gap voltage, main gap separation and main circuit energy on the firing characteristics have been studied. Trigger resistance progressively decreases with the number of firings of the trigger gap and as well as of the main gap. This decrease in the trigger resistance is more pronounced for main discharge currents exceeding 10 kA. The minimum trigger current required for reliable firing decreases with increase of trigger voltage upto a threshold value of 1.2 kV and there-onwards saturates at 3.0 A. This value is less than that obtained with Supramica as dielectric material. One hundred percent firing probability of the TVG at main gap voltages as low as 50 V is possible and this low voltage breakdown of the main gap appears to be similar to the breakdown at low pressures between moving plasma by other workers. and the cold electrodes immersed in it, as reported.
Resumo:
Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.
Resumo:
The effectiveness of various trace element concentrations in medicinal plants in the cure of various diseases can be determined by their quantitative estimation. Elemental concentrations of aqueous extract of F. religiosa leaves were measured by Laser-induced breakdown spectroscopy (LIBS). LIBS is a very powerful and efficient analytical tool for determining elemental constitution. The present study deals with the LIBS-based validation of elements responsible for the glycemic potential of aqueous extract of F. religiosa leaves in streptozotocin-induced diabetic models. The significant decrease in blood glucose level and marked improvement in glucose tolerance test of diabetic models is correlated to the concentration of elements present in the extract as revealed by LIBS spectra. Elements such as Mg and Ca have been observed in the LIBS spectra of F. religiosa.
Resumo:
This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa. The extract was found to be active against all four microorganisms used. Extent of inhibitory effect of extract was assessed at different concentrations of 25, 50, 75 mg/ml by measuring diameter of inhibition zone (DIZ). Our results clearly showed that the 75 mg/ml concentration of the extract had 14, 12 and 18 mm of the DIZ against Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa and 14 mm with 50 mg/ml concentration against Escherichia coli. The results were compared with the standard antibiotic `ampicillin' of 1 mg/ml concentration. LIBS was recorded with high power pulsed laser beam from Nd: YAG Laser (Continuum Surelite III-10), focused on the surface of the material, which was in liquid form, to generate plasma on the surface of the sample. LIBS data clearly demonstrate the presence of trace elements, magnesium and iron, in high concentration in the extract. Whereas, from the phytochemical profile reveals the presence of two new compounds, S-ethyl-N-{4-[(alpha-L-rhamnosyloxy) benzyl]} thiocarbamate and 2-acetoxy {4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy) benzyl]} acetonitrile as the major constituents. This study is the first report on synergetic effect of the phytoconstituents and certain set of elements present in their defined role in bacterial management against different bacterial strains.
Resumo:
The near-critical behaviour in complex fluids, comprising electrolyte solutions, polymer solutions and amphiphilic systems, reveals a marked departure from the 3-D Ising behaviour. This departure manifests itself either in terms of a crossover from Ising to mean-field (or classical) critical behaviour, when moving away from a given critical point (Tc), or by the persistence of only mean-field region in the surprisingly close vicinity of Tc. The ilo,non-Ising features of the osmotic compressibility (chi(T,p)) in solutions of electrolytes, that exhibit orle or many liquid-liquid transitions, will be presented. The underlying cause of the breakdown of the anticipated 3-D Ising behaviour in aqueous electrolyte solutions is traced to the structuring induced by the electrolytes. New evidence constituting, measurements of small-angle X-ray scattering (SAXS) and the excess molar volume, is advanced to support the thesis of the close relationship, between the structuring and the deviation from the 3-D Ising critical behaviour in aqueous electrolyte solutions.
Resumo:
Analysis of compressibility data of diatom earth and Ariake clay of similar water holding capacities has been made in this paper. Analysis suggests that in the case of clays with sheet minerals such as in Ariake clays, due to compression, cluster growth takes place, whereas with diatom earth the breakdown of cluster accounts for bilinear compression characteristics. It has been hypothesized that the interactive void ratio in the case of diatom earth is likely to be far smaller than that in the case of Ariake clay where most of the pore water is herd by micropores enclosed by clay particle clusters. In a way diatom earth reflects the behaviour of clay of very law physico-chemical potential with far reduced collapse potential. Even the compressibility at higher stress range both in undisturbed and remolded states are likely to be due to breakdown of clusters with little contribution from the physico - chemical potential. Diatom earth is not a collapsible material at stress levels of engineering interest despite the in -situ water content is at par or even higher than soft sensitive Ariake clay with comparatively low cementation consequently with pronounced collapsible potential.
Resumo:
Writing the hindered rotor (hr) partition function as the trace of (rho) over cap = e(-beta(H) over cap hr), we approximate it by the sum of contributions from a set of points in position space. The contribution of the density matrix from each point is approximated by performing a local harmonic expansion around it. The highlight of this method is that it can be easily extended to multidimensional systems. Local harmonic expansion leads to a breakdown of the method a low temperatures. In order to calculate the partition function at low temperatures, we suggest a matrix multiplication procedure. The results obtained using these methods closely agree with the exact partition function at all temperature ranges. Our method bypasses the evaluation of eigenvalues and eigenfunctions and evaluates the density matrix for internal rotation directly. We also suggest a procedure to account for the antisymmetry of the total wavefunction in the same. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n >= 1. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696033]
Resumo:
We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3702777]
Resumo:
We report the geometrical effect of graded buckled multiwalled carbon nanotube arrays on the electrical transport properties in the diffusive regime, via successive breakdown caused by the Joule heating. This breakdown occurs in the straighter region. Empirical relations involving the current-carrying ability, resistance, breakdown power, threshold voltage, diameter and length of carbon nanotube arrays are discussed on the basis of an extensive set of experimental data along with justification. The experimental results are corroborated by the density functional tight-binding calculations of electronic band structure. The band gap decreases as buckleness increases leading to the enhancement in the current-carrying ability and elucidating the role of buckleness in carbon nanotubes. Copyright (c) EPLA, 2012
Resumo:
It is generally known that addition of conducting or insulating particles to mineral transformer oil, lowers its breakdown strength, E-d. However, if the particulates are of molecular dimensions, or nanoparticles, (NPs), as they are called, the breakdown strength is seen to increase considerably. Recent experiments by the authors on oil cooled power equipment such as transformers showed that, nanofluids comprising NPs of selected oxides of iron, such as Fe(3)o(4), called magnetite, added to transformer oil increased the breakdown voltage of the virgin oil and more importantly a remarkable enhancement in the thermal conductivity and the viscosity and hence an increased loadability of the transformer for a given top oil temperature (TOT).
Resumo:
The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401