876 resultados para Markov Model Estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerodynamic balances are employed in wind tunnels to estimate the forces and moments acting on the model under test. This paper proposes a methodology for the assessment of uncertainty in the calibration of an internal multi-component aerodynamic balance. In order to obtain a suitable model to provide aerodynamic loads from the balance sensor responses, a calibration is performed prior to the tests by applying known weights to the balance. A multivariate polynomial fitting by the least squares method is used to interpolate the calibration data points. The uncertainties of both the applied loads and the readings of the sensors are considered in the regression. The data reduction includes the estimation of the calibration coefficients, the predicted values of the load components and their corresponding uncertainties, as well as the goodness of fit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a methodology based on Unconstrained Binary Programming (UBP) model and Genetic Algorithms (GAs) is proposed for estimating fault sections in automated distribution substations. The UBP model, established by using the parsimonious set covering theory, looks for the match between the relays' protective alarms informed by the SCADA system and their expected states. The GA is developed to minimize the UBP model and estimate the fault sections in a swift and reliable manner. The proposed methodology is tested by utilizing a real-life automated distribution substation. Control parameters of the GA are tuned to achieve maximum computational efficiency and reduction of processing time. Results show the potential and efficiency of the methodology for estimating fault section in real-time at Distribution Control Centers. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new method to improve Markov maps by means of a Bayesian approach. The method starts from an initial map model, wherefrom a likelihood function is defined which is regulated by a temperature-like parameter. Then, the new constraints are added by the use of Bayes rule in the prior distribution. We applied the method to the logistic map of population growth of a single species. We show that the population size is limited for all ranges of parameters, allowing thus to overcome difficulties in interpretation of the concept of carrying capacity known as the Levins paradox. © Published under licence by IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Bayesian nonparametric model for Taguchi's on-line quality monitoring procedure for attributes is introduced. The proposed model may accommodate the original single shift setting to the more realistic situation of gradual quality deterioration and allows the incorporation of an expert's opinion on the production process. Based on the number of inspections to be carried out until a defective item is found, the Bayesian operation for the distribution function that represents the increasing sequence of defective fractions during a cycle considering a mixture of Dirichlet processes as prior distribution is performed. Bayes estimates for relevant quantities are also obtained. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. We quantified the main sequence of spontaneous blinks in normal subjects and Graves' disease patients with upper eyelid retraction using a nonlinear and two linear models, and examined the variability of the main sequence estimated with standard linear regression for 10-minute periods of time. Methods. A total of 20 normal subjects and 12 patients had their spontaneous blinking measured with the magnetic search coil technique when watching a video during one hour. The main sequence was estimated with a power-law function, and with standard and trough the origin linear regressions. Repeated measurements ANOVA was used to test the mean sequence stability of 10-minute bins measured with standard linear regression. Results. In 95% of the sample the correlation coefficients of the main sequence ranged from 0.60 to 0.94. Homoscedasticity of the peak velocity was not verified in 20% of the subjects and 25% of the patients. The power-law function provided the best main sequence fitting for subjects and patients. The mean sequence of 10-minute bins measured with standard linear regression did not differ from the one-hour period value. For the entire period of observation and the slope obtained by standard linear regression, the main sequence of the patients was reduced significantly compared to the normal subjects. Conclusions. Standard linear regression is a valid and stable approximation for estimating the main sequence of spontaneous blinking. However, the basic assumptions of the linear regression model should be examined on an individual basis. The maximum velocity of large blinks is slower in Graves' disease patients than in normal subjects. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most studies on beef cattle longevity, only the cows reaching a given number of calvings by a specific age are considered in the analyses. With the aim of evaluating all cows with productive life in herds, taking into consideration the different forms of management on each farm, it was proposed to measure cow longevity from age at last calving (ALC), that is, the most recent calving registered in the files. The objective was to characterize this trait in order to study the longevity of Nellore cattle, using the Kaplan-Meier estimators and the Cox model. The covariables and class effects considered in the models were age at first calving (AFC), year and season of birth of the cow and farm. The variable studied (ALC) was classified as presenting complete information (uncensored = 1) or incomplete information (censored = 0), using the criterion of the difference between the date of each cow's last calving and the date of the latest calving at each farm. If this difference was >36 months, the cow was considered to have failed. If not, this cow was censored, thus indicating that future calving remained possible for this cow. The records of 11 791 animals from 22 farms within the Nellore Breed Genetic Improvement Program ('Nellore Brazil') were used. In the estimation process using the Kaplan-Meier model, the variable of AFC was classified into three age groups. In individual analyses, the log-rank test and the Wilcoxon test in the Kaplan-Meier model showed that all covariables and class effects had significant effects (P < 0.05) on ALC. In the analysis considering all covariables and class effects, using the Wald test in the Cox model, only the season of birth of the cow was not significant for ALC (P > 0.05). This analysis indicated that each month added to AFC diminished the risk of the cow's failure in the herd by 2%. Nonetheless, this does not imply that animals with younger AFC had less profitability. Cows with greater numbers of calvings were more precocious than those with fewer calvings. Copyright © The Animal Consortium 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this study was to verify whether there is an association between anaerobic running capacity (ARC) values, estimated from two-parameter models, and maximal accumulated oxygen deficit (MAOD) in army runners. Methods: Eleven, trained, middle distance runners who are members of the armed forces were recruited for the study (20 ± 1 years). They performed a critical velocity test (CV) for ARC estimation using three mathematical models and an MAOD test, both tests were applied on a motorized treadmill. Results: The MAOD was 61.6 ± 5.2 mL/kg (4.1 ± 0.3 L). The ARC values were 240.4 ± 18.6 m from the linear velocity-inverse time model, 254.0 ± 13.0 m from the linear distance-time model, and 275.2 ± 9.1 m from the hyperbolic time-velocity relationship (nonlinear 2-parameter model), whereas critical velocity values were 3.91 ± 0.07 m/s, 3.86 ± 0.08 m/s and 3.80 ± 0.09 m/s, respectively. There were differences (P < 0.05) for both the ARC and the CV values when compared between velocity-inverse time linear and nonlinear 2-parameter mathematical models. The different values of ARC did not significantly correlate with MAOD. Conclusion: In conclusion, estimated ARC did not correlate with MAOD, and should not be considered as an anaerobic measure of capacity for treadmill running. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of different degrees of complexity are found in the literature for the estimation of lightning striking distances and attractive radius of objects and structures. However, besides the oversimplifications of the physical nature of the lightning discharge on which most of them are based, till recently the tridimensional structure configuration could not be considered. This is an important limitation, as edges and other details of the object affect the electric field and, consequently, the upward leader initiation. Within this context, the Self-consistent leader initiation and propagation model (SLIM) proposed by Becerra and Cooray is state-of-the-art leader inception and propagation leader model based on the physics of leader discharges which enables the tridimensional geometry of the structure to be taken into account. In this paper, the model is used for estimating the striking distance and attractive radius of power transmission lines. The results are compared with those obtained from the electrogeometric and Eriksson's models. © 2003-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O uso da comunicação de voz e dados através de dispositivos móveis vem aumentando significativamente nos últimos anos. Tal expansão traz algumas dificuldades inerentes, tais como: ampliação constante de capacidade das redes e eficiência energética. Neste contexto, vem se consolidando o conceito de Green networks, que se concentra no esforço para economia de energia e redução de CO2. Neste sentido, este trabalho propõe validar um modelo de uma política baseado em processo markoviano de decisão, visando a otimizar o consumo de energia, QoS e QoE, na alocação de usuários em redes macrocell e femtocell. Para isso o modelo foi inserido no simulador NS-2, aliando a solução analítica markoviana à flexibilidade característica da simulação discreta. A partir dos resultados apresentados na simulação, a política obteve uma economia significativa no consumo energético, melhorando a eficiência energética em até 4%, além de melhorar a qualidade de serviço em relação às redes macrocell e femtocell, demonstrando-se eficaz, de modo a alterar diretamente as métricas de QoS e de QoE.