948 resultados para MULTIVARIATE CALIBRATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers in ecology commonly use multivariate analyses (e.g. redundancy analysis, canonical correspondence analysis, Mantel correlation, multivariate analysis of variance) to interpret patterns in biological data and relate these patterns to environmental predictors. There has been, however, little recognition of the errors associated with biological data and the influence that these may have on predictions derived from ecological hypotheses. We present a permutational method that assesses the effects of taxonomic uncertainty on the multivariate analyses typically used in the analysis of ecological data. The procedure is based on iterative randomizations that randomly re-assign non identified species in each site to any of the other species found in the remaining sites. After each re-assignment of species identities, the multivariate method at stake is run and a parameter of interest is calculated. Consequently, one can estimate a range of plausible values for the parameter of interest under different scenarios of re-assigned species identities. We demonstrate the use of our approach in the calculation of two parameters with an example involving tropical tree species from western Amazonia: 1) the Mantel correlation between compositional similarity and environmental distances between pairs of sites, and; 2) the variance explained by environmental predictors in redundancy analysis (RDA). We also investigated the effects of increasing taxonomic uncertainty (i.e. number of unidentified species), and the taxonomic resolution at which morphospecies are determined (genus-resolution, family-resolution, or fully undetermined species) on the uncertainty range of these parameters. To achieve this, we performed simulations on a tree dataset from southern Mexico by randomly selecting a portion of the species contained in the dataset and classifying them as unidentified at each level of decreasing taxonomic resolution. An analysis of covariance showed that both taxonomic uncertainty and resolution significantly influence the uncertainty range of the resulting parameters. Increasing taxonomic uncertainty expands our uncertainty of the parameters estimated both in the Mantel test and RDA. The effects of increasing taxonomic resolution, however, are not as evident. The method presented in this study improves the traditional approaches to study compositional change in ecological communities by accounting for some of the uncertainty inherent to biological data. We hope that this approach can be routinely used to estimate any parameter of interest obtained from compositional data tables when faced with taxonomic uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current nanometer technologies suffer within-die parameter uncertainties, varying workload conditions, aging, and temperature effects that cause a serious reduction on yield and performance. In this scenario, monitoring, calibration, and dynamic adaptation become essential, demanding systems with a collection of multi purpose monitors and exposing the need for light-weight monitoring networks. This paper presents a new monitoring network paradigm able to perform an early prioritization of the information. This is achieved by the introduction of a new hierarchy level, the threshing level. Targeting it, we propose a time-domain signaling scheme over a single-wire that minimizes the network switching activity as well as the routing requirements. To validate our approach, we make a thorough analysis of the architectural trade-offs and expose two complete monitoring systems that suppose an area improvement of 40% and a power reduction of three orders of magnitude compared to previous works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. The positions of the end effector are related to incremental positions of resolvers of the motors of the robot, and a kinematic model of the robot is used to find a new group of parameters which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and improving spatial measurements. Finally, the robotic system is designed to carry out tracking tasks and the calibration of the robot is validated by means of integrating the errors of the visual controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Components of a Wind Tunnel Balance: Design and Calibration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to assess the potential of visible and near infrared spectroscopy (VIS+NIRS) combined with multivariate analysis for identifying the geographical origin of cork. The study was carried out on cork planks and natural cork stoppers from the most representative cork-producing areas in the world. Two training sets of international and national cork planks were studied. The first set comprised a total of 479 samples from Morocco, Portugal, and Spain, while the second set comprised a total of 179 samples from the Spanish regions of Andalusia, Catalonia, and Extremadura. A training set of 90 cork stoppers from Andalusia and Catalonia was also studied. Original spectroscopic data were obtained for the transverse sections of the cork planks and for the body and top of the cork stoppers by means of a 6500 Foss-NIRSystems SY II spectrophotometer using a fiber optic probe. Remote reflectance was employed in the wavelength range of 400 to 2500 nm. After analyzing the spectroscopic data, discriminant models were obtained by means of partial least square (PLS) with 70% of the samples. The best models were then validated using 30% of the remaining samples. At least 98% of the international cork plank samples and 95% of the national samples were correctly classified in the calibration and validation stage. The best model for the cork stoppers was obtained for the top of the stoppers, with at least 90% of the samples being correctly classified. The results demonstrate the potential of VIS + NIRS technology as a rapid and accurate method for predicting the geographical origin of cork plank and stoppers