930 resultados para MOLECULAR-WEIGHT KININOGEN
Resumo:
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.
Resumo:
The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides–Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
Resumo:
There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action.
Resumo:
The expression of dystrophin in muscle biopsies from nine cases of polymyositis, ten cases of juvenile dermatomyositis and three adults with dermatomyositis was studied by Western blot analysis and immunocytochemistry. Five antibodies corresponding to different N- and C-terminal regions of the dystrophin gene were used. Sixteen of the 22 cases (73%) showed an abnormality in the expression of dystrophin on Western blot analysis, either with a reduced molecular weight protein or a reduced amount. Immunostaining was abnormal in 11 out of 19 cases (58%) and showed varying degrees of discontinuity or loss of sarcolemmal staining. Immunolabelling of these areas with antibodies to beta-spectrin was normal implying that the changes were not caused by a loss of the sarcolemma. These results show that secondary changes in the expression of dystrophin can occur in the absence of an abnormality in the corresponding gene and that dystrophin cannot be used in isolation as a diagnostic marker for muscular dystrophy.
Resumo:
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, was studied in needle biopsy samples taken from the quadriceps muscle of 15 asymptomatic carriers of DMD (13 adults and 2 young girls) and one symptomatic adult carrier. Antibodies to N- and C-terminal regions of dystrophin were used for both Western blot analysis and immunocytochemistry and a monoclonal antibody to beta-spectrin used to assess membrane integrity. All asymptomatic adult carriers showed some abnormality in dystrophin immunostaining but very few negative fibres were present. A clear mosaic of dystrophin positive and negative fibres was seen only in the adult symptomatic carrier and the two young girls. On a Western blot, all carriers studied had dystrophin of normal molecular weight, but most had reduced abundance. In adult carriers, the amount of dystrophin relative to normal controls varied, but it was unrelated to age, serum creatine kinase (CK) levels or to the degree of pathology. Carriers with normal CK showed abnormalities in dystrophin expression. The dystrophin immunoblotting profile of the 2 young girls was very similar to that of their mothers, but the mosaic pattern of immunostaining was not apparent in the older carriers. In conclusion, dystrophin immunostaining and Western blot analysis of biopsy samples from asymptomatic carriers is often abnormal and they may be useful additional aids for establishing carrier status, particularly in younger girls.
Resumo:
Dystrophin, the product of the Duchenne muscular dystrophy (DMD) gene, was studied in muscle from 16 human fetuses at risk for the disease. Eleven high risk (greater than 95% probability) and 5 low-risk (less than 25% probability) fetuses were studied with antibodies raised to different regions of the protein. All low-risk fetuses showed a similar pattern to that of normal fetuses of a comparable age: using Western blot analysis, a protein was detected of similar size and abundance to that of normal fetuses (i.e. smaller molecular weight than that of adult muscle); immunocytochemistry showed uniform sarcolemmal staining in fetuses older than 18 weeks gestation and differential staining of myotubes at different stages of development (distinguished by size) in younger fetuses (less than 15 weeks gestation). In contrast, Western blot analysis of high-risk fetuses detected low levels of dystrophin in 4 cases; 7 fetuses had no detectable protein. Immunocytochemistry with some dystrophin antibodies showed weak staining of the sarcolemma and around central nuclei in younger fetuses; in older fetuses there was little sarcolemmal staining with any antibody other than occasional positive fibres. These results indicate that careful study of dystrophin in fetuses at risk for DMD can be used to establish the clinical phenotype and provide additional information for future family counselling.
Resumo:
Dystrophin is expressed only in muscle and brain, but is absent from all tissues of the adult mdx mouse, a mutant with a single base substitution in the dystrophin gene. The brains of both normal and mdx mice contain a protein of approximately 230 kDa that is recognised by anti-dystrophin antibodies raised to the N-terminal region of the rod-like domain. Although the N-terminal and central rod regions of dystrophin share structural homologies with spectrin, the 230-kDa protein represents neither of the presently described forms of brain spectrin by a variety of criteria (molecular weight, cerebellar localisation, and developmental regulation) and is distinct from the product of the dystrophin gene. Studies of mdx and normal mouse brain show different postnatal developmental regulation of the 230-kDa dystrophin-immunoreactive protein.
Resumo:
Sherry wine has characteristic taste and aroma, different from other wine-based alcoholic beverages. This paper reports a study of the non-volatile, low-molecular weight compounds found in sherry and related alcoholic beverages that may contribute to taste. Compounds analysed included free amino acids, organic acids, sugars and small peptides (linear and cyclic). A series of seven diketopiperazines (cyclic dipeptides) namely, cyclo(Leu-Leu), cyclo(Pro-Leu), cyclo(Pro-Ile), cyclo(Pro-Met), cyclo( Pro-Val), cyclo(Pro-Pro) and cyclo(Val-Ala) were identified for the first time in sherry. Although traces were found in some other alcoholic beverages, levels were low compared with sherry. The base wine used in the sherry production had only traces of diketopiperazines, indicating that the casking stage of sherry production might be responsible for their formation.
Resumo:
Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The gelatin prepared from the skins of the Atlantic halibut (Hippoglossus hippoglossus) was investigated for the development of edible films plasticized with 30g sorbitol/100g gelatin. Two types of dry gelatin preparations were obtained depending on whether an intermediate evaporation step at 60 degrees C in the drying procedure is included or not. The amino acid composition, molecular weight distribution (determined by SDS-polyacrylamide gel electrophoresis) and glass transition temperature (determined by differential scanning calorimetry) of the gelatins were determined and related to some physical properties of the resulting films. The gelatin extracted from the halibut skins showed a suitable filmogenic capacity, leading to transparent, weakly colored, water-soluble and highly extensible films. The intermediate evaporation step at 60 degrees C induced thermal protein degradation, causing the resulting films to be significantly less resistant and more extensible. No differences in water vapor permeability, viscoelasticity, glass transition or color properties were evidenced between the two gelatins tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
Levels of autoantibodies to oxidized low-density lipoprotein (oxLDL) have been correlated to atherosclerosis; however, contradictory results have been shown. To better understand the role of autoantibodies to oxLDL in atherogenesis, and their potential to predict risk of developing coronary artery disease we investigated the antibody response of unstable angina (UA) patients and healthy controls against chromatographic separated fractions of oxLDL. Five major peaks were detected after chromatographic separation of oxLDL and 10 fractions were collected. Surprisingly, when the response to high molecular weight fractions was analysed, we observed a significant increase in the levels of autoantibodies in controls compared to UA. In contrast, when the autoantibody response to intermediate and low molecular weight fractions was analysed, we observed that the UA group showed consistently higher levels compared with controls. Our data demonstrates that within oxLDL there are major fractions that can be recognized by autoantibodies from either UA patients or healthy individuals, and that the use of total oxLDL as an antigen pool may mask the presence of some antigenic molecules and their corresponding antibodies. Further studies are needed, but the analysis of antibody profiles may indeed open up a novel approach for evaluation and prevention against atherosclerosis.
Resumo:
Polyhydroxyalcanoates copolymers with 3-hydroxybutirate (3HB) and 3-hydroxyvalerate (3HV) co-monomers, P3(HB-co-x%HV), were produced in fed-batch culture by Ralstonia eutropha DSM428 using fructose as a single carbon source in the first step and adding propionic acid in the second step by alternating feeding. Polymer yield was 0.18 g/L with a content of 24 mol% of the 3HV fraction determined by H-1 NMR. NMR measurements indicated that the polymer obtained is isotactic. The copolymer attained 35% of crystallinity according to X-ray diffraction measurements, and two (020) planes were observed. Thermal behavior presented melting temperature at 154 degrees C and the crystallization temperature was 65 degrees C. A glass transition temperature was observed at -10 degrees C. Average molecular weight measured by GPC was 4.9 x 10(5) Dalton. Isothermal radial growth rates of spherulites of P3(HB-co-24%HV) were studied. All experimental facts and the analysis of the sequence distribution of diads and triads of 3HB and 3HV units led to the conclusion that it is not a completely statistical random copolymer once it contains different types of segments. POLYM.
Resumo:
Poly(3-hydroxybutyrate) was produced in fed-batch cultures of Ralstonia eutropha DSM 428 and Alcaligenes latus ATCC 29712 on a mineral medium with different carbon sources such as sucrose, sodium lactate, lactic acid, soybean oil and fatty acid. The bacteria converted the different carbon sources supplied into P3HB. The best results were obtained when lactate or soybean oil were supplied as the sole carbon source. The range of number average molar mass (Mn) for the polymers, analyzed by Gel Permeation Chromatography was 1.65 to 0.79 x 10(5) g mol(-1). FTIR spectroscopy revealed a characteristic absorbance associated with polyester structures. The crystallinity degree, determinate from X-ray diffractograms, was about 69% in all synthesized polymers. The thermal properties associated to semicrystalline polymers indicated a glass transition at 0.1 degrees C and a melting point at about 175 degrees C and enthalpy of 63-89 J g(-1). The (1)H-NMR and (13)C-NMR spectra of the polymers were in agreement with the calculated chemical shifts associated with P3HB structures.