904 resultados para MICROARRAY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the case of operated breast cancer (BC), prognostic markers help to determine if the patient needs additional treatment and predictive markers help the clinician to decide which treatment to use. Thus, a better knowledge of known predictive and prognostic markers and the identification of new markers, may improve the treatment of BC patients. The transforming growth factor-beta type II receptor (TGF-beta RII), a main receptor of transforming growth factor beta pathway, is a potential new prognostic marker. The aims of the present study were to investigate both the predictive and prognostic impact of TGF-beta RII in BC samples. TGF-beta RII protein expression was evaluated using immunohistochemistry on a tissue microarray containing 110 TNM stage III BC samples obtained prior to doxorubicin-based neoadjuvant chemotherapy (NAC). Our results demonstrate that TGF-beta RII did not predict the response to NAC. on the other hand, an association between TGF-beta RII-negative tumor and higher risk of metastasis to lungs and bones was verified. TGF-beta RII negativity was an independent prognostic factor for decreased disease-free and overall survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chicken is one of the most important sources of animal protein for human consumption, and breeding programmes have been responsible for constant improvements in production efficiency and product quality. Furthermore, chicken has largely contributed to fundamental discoveries in biology for the last 100 years. In this article we review recent developments in poultry genomics and their contribution to adding functional information to the already existing structural genomics, including the availability of the complete genome sequence, a comprehensive collection of mRNA sequences ( ESTs), microarray platforms, and their use to complement QTL mapping strategies in the identification of genes that underlie complex traits. Efforts of the Brazilian Poultry Genomics Programme in this area resulted in generation of a resource population, which was used for identification of Quantitative Trait Loci ( QTL) regions, generation of ESTs and candidate gene studies that contributed to furthering our understanding of the complex biological processes involved in growth and muscular development in chicken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. filstidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amelogenesis imperfecta (AI) is a collective term used to describe phenotypically diverse forms of defective tooth enamel development. AI has been reported to exhibit a variety of inheritance patterns, and several loci have been identified that are associated with AI. We have performed a genome-wide scan in a large Brazilian family segregating an autosomal dominant form of AI and mapped a novel locus to 8q24.3. A maximum multipoint LOD score of 7.5 was obtained at marker D8S2334 (146,101,309 bp). The disease locus lies in a 1.9 cM (2.1 Mb) region according to the Rutgers Combined Linkage-Physical map, between a VNTR marker (at 143,988,705 bp) and the telomere (146,274,826 bp). Ten candidate genes were identified based on gene ontology and microarray-facilitated gene selection using the expression of murine orthologues in dental tissue, and examined for the presence of a mutation. However, no causative mutation was identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogenesis, under normal conditions, is a tightly regulated balance between pro- and antiangiogenic factors. The goal of this study was to investigate the mechanisms involved in the control of the skeletal muscle angiogenic response induced by electrical stimulation during the suppression of plasma renin activity (PRA) with a high-salt diet. Rats fed 0.4% or 4% salt diets were exposed to electrical stimulation for 7 days. The tibialis anterior ( TA) muscles from stimulated and unstimulated hindlimbs were removed and prepared for gene expression analysis, CD31-terminal deoxynucleotide transferase-mediated dUTP nick-end labeling ( TUNEL) double-staining assay, and Bcl-2 and Bax protein expression by Western blot. Rats fed a low-salt diet showed a dramatic angiogenesis response in the stimulated limb compared with the unstimulated limb. This angiogenesis response was significantly attenuated when rats were placed on a high-salt diet. Microarray analysis showed that in the stimulated limb of rats fed a low-salt diet many genes related to angiogenesis were upregulated. In contrast, in rats fed a high-salt diet most of the genes upregulated in the stimulated limb function in apoptosis and cell cycle arrest. Endothelial cell apoptosis, as analyzed by CD31-TUNEL staining, increased by fourfold in the stimulated limb compared with the unstimulated limb. There was also a 48% decrease in the Bcl-2-to-Bax ratio in stimulated compared with unstimulated limbs of rats fed a high-salt diet, confirming severe apoptosis. This study suggests that the increase in endothelial cell apoptosis in TA muscle might contribute to the attenuation of angiogenesis response observed in rats fed a high-salt diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues?Results: In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor - joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for similar to 11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes.Conclusion: Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene x tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutherian mammals share a common ancestor that evolved into two main placental types, i.e., hemotrophic (e.g., human and mouse) and histiotrophic (e.g., farm animals), which differ in invasiveness. Pregnancies initiated with assisted reproductive techniques (ART) in farm animals are at increased risk of failure; these losses were associated with placental defects, perhaps due to altered gene expression. Developmentally regulated genes in the placenta seem highly phylogenetically conserved, whereas those expressed later in pregnancy are more species-specific. To elucidate differences between hemotrophic and epitheliochorial placentae, gene expression data were compiled from microarray studies of bovine placental tissues at various stages of pregnancy. Moreover, an in silico subtractive library was constructed based on homology of bovine genes to the database of zebrafish - a nonplacental vertebrate. In addition, the list of placental preferentially expressed genes for the human and mouse were collected using bioinformatics tools (Tissue-specific Gene Expression and Regulation [TiGER] - for humans, and tissue-specific genes database (TiSGeD) - for mice and humans). Humans, mice, and cattle shared 93 genes expressed in their placentae. Most of these were related to immune function (based on analysis of gene ontology). Cattle and women shared expression of 23 genes, mostly related to hormonal activity, whereas mice and women shared 16 genes (primarily sexual differentiation and glycoprotein biology). Because the number of genes expressed by the placentae of both cattle and mice were similar (based on cluster analysis), we concluded that both cattle and mice were suitable models to study the biology of the human placenta. (C) 2011 Elsevier B.V. All rights reserved.