971 resultados para MESENCHYMAL STEM CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone Morphogenetic Proteins (BMPs) are multifunctional secreted cytokines, which belong to the TGF-beta superfamily. These glycoproteins act as a disulfide-linked homo- or heterodimers, being potent regulators of bone and cartilage formation and repair, cell proliferation during embryonic development and bone homeostasis in the adult. BMPs are promising molecules for tissue engineering and bone therapy. The present review discusses this family of proteins, their structure and biological function, their therapeutic applications and drawbacks, their effects on mesenchymal stem cells differentiation, and the cell signaling pathways involved in this process. (C) 2014 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology and can differentiate into bone, cartilage and fat cells. Therapeutic potential of MSCs have been studied in experimental models, such as rabbit, in Laboratory of Cell Engineering of Botucatu. However, no specific markers have been reported for expanded rabbit MSCs, which hampers the isolation of pure MSC populations by immunophenotypic characterization. Thus, the objective of this study was to produce monoclonal antibodies (mAbs) to rabbit MSCs. MSCs derived from rabbit bone marrow (BM) were isolated, cultured, expanded ex vivo, and immunized into three BALB/c mices, and spleen cells subsequently harvested were used to generate hibridoma cell lines secreting antibodies against MSCs. Hybridoma cells were screened by flow cytometry and antibody-producing cells were subjected to subsequent rounds of retests. MSC1-160 obtained the best positivity for IgG expression and was cloned by limiting dilutions and micromanipulation. Ascitic fluid from ten best clones was purified by affinity chromatography in Protein A-sepharose CL-4B column and purification control was performed by electrophoresis in agarose gels. The purified IgG were tested against rabbit MSCs, obtaining high positivity by flow Cytometry. In conclusion, we developed 10 mAbs, MSC1-160 A20, A30, A41, A47, A55, A60, A63, A69, A81, and A82, that recognize rabbit MSC cell surface antigens showing potential for immunophenotypic characterization of rabbit MSC cell lines

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil has the fourth largest horse herd in the world, this is due the recognition and appreciation that the different equestrian games are having within the country. Injuries of the tendon, especially in the digital flexor tendon, are the main cause of athletic life reduction among horses. The treatment of tendinitis in horses seeks full recovery of the damage tissue reestablishing the function previously lost, however conventional treatments have proven to be ineffective when considered the quality of the scar tissue and the rate of recurrence. Due to this, the use of adult stem cells to the treatment of musculoskeletal injuries of horses has been studied for some time. This method of treatment consists of aspiration of bone marrow or removal of subcutaneous fat tissue and implantation of these cells in the injured tissue. After obtaining the bone marrow the implantation can be performed with total bone marrow, with the mononuclear fraction of MSC or with cells cultured in vitro. From the fat tissue is used the stromal vascular fraction obtained by collagenase digestion, followed or not by cell culture. According to some studies, cell therapy with material obtained from bone marrow or adipose tissue has shown to be viable, given that these materials are abundant in repair components such as mesenchymal stem cells (MSC), growth factors and other components of the collagen matrix. Several studies using both types of cells have shown great potential and promising clinical results. However, knowledge of the biology and characterization of these cells remain largely unknown, and therefore is needed great care and caution when using stem cells for the treatment of musculoskeletal disorders in horses