975 resultados para MARROW STROMAL CELLS
Resumo:
Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.
Resumo:
BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.
Resumo:
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive molecule expressed in some subsets of normal and neoplastic cells. Mature human dendritic cells (DCs) have been shown to express IDO1, but little is known about its expression and function during DC differentiation from bone marrow hematopoietic stem/progenitor cells (HSPCs). Here, we show that during in vitro differentiation along the myeloid DC lineage, CD34(+) HSPCs acquire IDO1 expression, which acts in a tolerogenic manner by inducing a population of fully functional CD4(+)CD25(+) FOXP3(+) T-regulatory cells. Phenotypically, CD1a(+)CD14(-) HPSC-derived DCs expressed IDO1, langerin, CD11b, and CD1c. Cell-sorting experiments demonstrated that IDO1 expression is found in a subset of CD1a(+)CD14(-)langerin(+) cells, expressing CD103, which is capable of inducing T-regulatory cells in an IDO1-dependent manner. In conclusion, DC differentiation from CD34(+) HSPCs results in the expression of a functionally active IDO1 protein in CD1a(+)langerin(+), CD103-expressing DCs. These data point toward IDO1 expression as part of a tolerogenic signature during DC development.
Resumo:
Stroma mediated wound healing signals may share similarities with the ones produced by tumor's microenvironment and their modulation may impact tumor response to the various anti-cancer treatments including radiation therapy. Therefore we conducted this study, to assess the crosstalk between stromal and carcinoma cells in response to radiotherapy by genetic modulation of the stroma and irradiation. We found that fibroblasts irrespective of their RhoB status do not modulate intrinsic radiosensitivity of TC-1 but produce diffusible factors able to modify tumor cell fate. Then we found that Wt and RhoB deficient fibroblasts stimulated TC-1 migration through distinct mechanisms which are TGF-β1 and MMP-mediated respectively. Lastly, we found that simultaneous irradiation of fibroblasts and TC-1 abrogated the pro-migratory phenotype by repression of TGF-β and MMP secretion. This last result is highly relevant to the clinical situation and suggests that conversely to, the current view; irradiated stroma would not enhance carcinoma migration and could be manipulated to promote anti-tumor immune response.
Resumo:
Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +- 0.58 (m +- SE) and 1.00 +- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.
Resumo:
Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in β-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.
Resumo:
Tissue engineering is a popular topic in peripheral nerve repair. Combining a nerve conduit with supporting adipose-derived cells could offer an opportunity to prevent time-consuming Schwann cell culture or the use of an autograft with its donor site morbidity and eventually improve clinical outcome. The aim of this study was to provide a broad overview over promising transplantable cells under equal experimental conditions over a long-term period. A 10-mm gap in the sciatic nerve of female Sprague-Dawley rats (7 groups of 7 animals, 8 weeks old) was bridged through a biodegradable fibrin conduit filled with rat adipose-derived stem cells (rASCs), differentiated rASCs (drASCs), human (h)ASCs from the superficial and deep abdominal layer, human stromal vascular fraction (SVF), or rat Schwann cells, respectively. As a control, we resutured a nerve segment as an autograft. Long-term evaluation was carried out after 12 weeks comprising walking track, morphometric, and MRI analyses. The sciatic functional index was calculated. Cross sections of the nerve, proximal, distal, and in between the two sutures, were analyzed for re-/myelination and axon count. Gastrocnemius muscle weights were compared. MRI proved biodegradation of the conduit. Differentiated rat ASCs performed significantly better than undifferentiated rASCs with less muscle atrophy and superior functional results. Superficial hASCs supported regeneration better than deep hASCs, in line with published in vitro data. The best regeneration potential was achieved by the drASC group when compared with other adipose tissue-derived cells. Considering the ease of procedure from harvesting to transplanting, we conclude that comparison of promising cells for nerve regeneration revealed that particularly differentiated ASCs could be a clinically translatable route toward new methods to enhance peripheral nerve repair.
Resumo:
Background. Mycosis Fungoides (MF) is the most common cutaneous T-cell lymphoma, and large cell trasformation (tMF) is an adverse prognostic event. Extra-cutaneous dissemination can occur in the course of the disease, but dissemination to the central nervous system (CNS) is uncommon. Moreover, CNS lymphomas are overall rare and most often of B-cell phenotype. We report a case of CNS large T-cell lymphoma presenting as multiple cerebral lesions in a patient with a history of MF. Methods. We report a case of a 33-year-old woman, known since the age of 16 for erythematous plaques thought to be atopic dermatitis, who developed, end 2012, multiple nodular skin lesions and peripheral adenopathies. Two skin lesions were biopsied simultaneously, and diagnosed as MF and tMF. A lymph node biopsy showed dermatopathic changes without lymphoma (Stage IIB). She received local treatment (UVB, PUVA and radiation therapy) and interferon therapy, and experienced almost complete remission. In 2015 neurological symptoms lead to evidence multiple cerebral lesions, suspicious for lymphoma, evaluated by stereotaxic biopsies. We compared histopathological and molecular features of these with previous skin specimens. After negative bone marrow staging biopsy, she was recently started on chemotherapy (MATRIX). Short follow-up shows rapidly worsening clinical conditions. Results. One of the initial skin biopsies showed atypical lymphoid cells with epidermotropism, Pautrier abcesses and CD4+ CD30- phenotype; the other revealed diffuse dermal infiltration by predominantly large cerebriform tumor cells with high proliferative fraction, and CD2−CD3 −CD4+/−CD7−CD30+ALK- EMA- non-cytotoxic immunophenotype. Altogether, these results led us to diagnose MF and tMF, respectively. The brain was infiltrated by large atypical lymphoid cells with cerebriform nuclei, somewhat anaplastic features and perivascular distribution. By immunohistochemistry, tumor cells were highly proliferative, with a CD2−CD3+CD5−CD7+CD30+ activated cytotoxic immunophenotype. A diagnosis of CD30+ cytotoxic peripheral T-cell lymphoma was retained. TRG and TRB clonality analyses revealed clonal rearrangements in skin and CNS biopsies, with identical patterns in both skin specimens but only minimally overlapping profiles when compared to the CNS sample. Der Pathologe 6 ? 2015 | 633 Conclusions. The reported case illustrates an uncommon finding of a CNS T-cell lymphoma in a patient with previous MF, questioning the clonal relationship between the two diseases and challenging the adequate classification of this CNS lymphoma as either a progression or a de novo lymphoma. Despite differences in immunophenotype and clonality patterns, this CNS lymphoma could possibly represent an aggressive divergent evolution of a primary cutaneous T-cell lymphoma. Additional sequencing is ongoing to try to solve the question.
Resumo:
The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.
Resumo:
Within the complex cellular arrangement found in the bone marrow stroma there exists a subset of nonhematopoietic cells referred to as mesenchymal progenitor cells (MPC). These cells can be expanded ex vivo and induced, either in vitro or in vivo, to terminally differentiate into at least seven types of cells: osteocytes, chondrocytes, adipocytes, tenocytes, myotubes, astrocytes and hematopoietic-supporting stroma. This broad multipotentiality, the feasibility to obtain MPC from bone marrow, cord and peripheral blood and their transplantability support the impact that the use of MPC will have in clinical settings. However, a number of fundamental questions about the cellular and molecular biology of MPC still need to be resolved before these cells can be used for safe and effective cell and gene therapies intended to replace, repair or enhance the physiological function of the mesenchymal and/or hematopoietic systems.
Resumo:
The distinction between normal and leukemic bone marrow (BM) B-precursors is essential for the diagnosis and treatment monitoring of acute lymphoblastic leukemia (ALL). In order to evaluate the potential use of quantitative fluorescence cytometry (QFC) for this distinction, we studied 21 normal individuals and 40 patients with CD10+ ALL. We characterized the age-related changes of the CD10, CD19, TdT, CD34 and CD79a densities in normal and leukemic BM. Compared to normal adults, the B-precursors from normal children expressed significantly lower values of CD34-specific antibody binding capacity (SABC) (median value of 86.6 vs 160.2 arbitrary units (a.u.) in children and adults, respectively). No significant age-related difference was observed in the expression of the other markers in the normal BM, or in any of the markers in the leukemic BM. Based on the literature, we set the cut-off value for the normal CD10 expression at 45 x 10³ a.u. for both age groups. For the remaining markers we established the cut-off values based on the minimum-maximum values in the normal BM in each age group. The expression of CD10 was higher than the cut-off in 30 ALL cases and in 18 of them there was a concomitant aberrant expression of other markers. In 9 of the 10 CD10+ ALL with normal CD10 SABC values, the expression of at least one other marker was aberrant. In conclusion, the distinction between normal and leukemic cells by QFC was possible in 38/40 CD10+ ALL cases.
Resumo:
Acute myelogenous leukemia (AML) blast cells show high-affinity degradation of low-density lipoprotein (LDL), suggesting an increased expression of cellular LDL receptors. LDE is a lipid microemulsion easily synthesized in vitro which is known to mimic the metabolic pathway of LDL. We used LDE as a carrier for daunorubicin and assayed the cytotoxicity of the complex using AML blast cells since RT-PCR analysis showed that AML cells express LDL receptor mRNA. The LDE:daunorubicin complex killed 46.7% of blast cells and 20.2% of normal bone marrow cells (P<0.001; Student t-test). Moreover, this complex destroyed AML blast cells as efficiently as free daunorubicin. Thus, LDE might be a suitable carrier of chemotherapeutic agents targeting these drugs to neoplastic cells and protecting normal tissues.
Resumo:
Mast cell progenitors arise in bone marrow and then migrate to peripheral tissues where they mature. It is presumed that integrin receptors are involved in their migration and homing. In the present study, the expression of various integrin subunits was investigated in three systems of adherent and nonadherent mast cells. Mesentery mast cells, freshly isolated bone marrow-derived mast cells (BMMC) and RBL-2H3 cells grown attached to tissue culture flasks are all adherent mast cells and peritoneal mast cells, and cultured BMMC and RBL-2H3 cells grown in suspension represent nonadherent mast cell populations. Pure populations of mast cells were immunomagnetically isolated from bone marrow, mesentery and peritoneal lavage using the mast cell-specific monoclonal antibody AA4. By immunomicroscopy, we could demonstrate that all of these mast cells expressed alpha4, alpha5, alpha6, ß1 and ß7 integrin subunits. The expression of the alpha4 integrin subunit was 25% higher in freshly isolated mesentery mast cells and BMMC. Consistent with the results obtained by immunomicroscopy, mesentery mast cells expressed 65% more mRNA for the alpha4 integrin subunit than peritoneal mast cells. In vitro studies were also conducted using the rat mast cell line RBL-2H3. RBL-2H3 cells grown attached to the tissue culture flasks or as suspension cultures expressed the same integrin subunits identified in bone marrow, mesenteric and peritoneal mast cells ex vivo. Similarly, the expression of alpha4 integrin was higher in adherent cells. Therefore, alpha4 integrins may play a critical role in the anchorage of mast cells to the extracellular matrix in bone marrow and in peripheral tissues.
Resumo:
Allogeneic bone marrow transplantation (alloBMT) is the only curative therapy for chronic myelogenous leukemia (CML). This success is explained by the delivery of high doses of antineoplastic agents followed by the rescue of marrow function and the induction of graft-versus-leukemia reaction mediated by allogeneic lymphocytes against host tumor cells. This reaction can also be induced by donor lymphocyte infusion (DLI) producing remission in most patients with CML who relapse after alloBMT. The immunological mechanisms involved in DLI therapy are poorly understood. We studied five CML patients in the chronic phase, who received DLI after relapsing from an HLA-identical BMT. Using flow cytometry we evaluated cellular activation and apoptosis, NK cytotoxicity, lymphocytes producing cytokines (IL-2, IL-4 and IFN-gamma), and unstimulated (in vivo) lymphocyte proliferation. In three CML patients who achieved hematological and/or cytogenetic remission after DLI we observed an increase of the percent of activation markers on T and NK cells (CD3/DR, CD3/CD25 and CD56/DR), of lymphocytes producing IL-2 and IFN-gamma, of NK activity, and of in vivo lymphocyte proliferation. These changes were not observed consistently in two of the five patients who did not achieve complete remission with DLI. The percent of apoptotic markers (Fas, FasL and Bcl-2) on lymphocytes and CD34-positive cells did not change after DLI throughout the different study periods. Taken together, these preliminary results suggest that the therapeutic effect of DLI in the chronic phase of CML is mediated by classic cytotoxic and proliferative events involving T and NK cells but not by the Fas pathway of apoptosis.