932 resultados para Luitpold, margrave of Bavaria, d. 907.
Resumo:
The optical and electronic properties of highly tetrahedral amorphous diamond-like carbon (amorphous diamond, a-D) films were investigated. The structure of the films grown on silicon and glass substrates, under similar deposition conditions using a compact filtered cathodic vacuum arc system, are compared using electron energy loss spectroscopy (EELS). Results from hydrogenation of the films are also reported. The hydrogenated films show two prominent IR absorption peaks centered at 2920 and 2840 cm-1, which are assigned to the stretch mode of the C-H bond in the sp3 configuration on the C-H3 and C-H sites respectively. The high loss EELS spectra show no reduction in the high sp3 content in the hydrogenated films. UV and visible transmission spectra of a-D thin films are also presented. The optical band gap of 2.0-2.2 eV for the a-D films is found to be consistent with the electronic bandgap. The relationship between the intrinsic compressive stress in the films and the refractive index is also presented. The space charge limited current flow is analyzed and coupled with the optical absorption data to give an estimate of 1018 cm-3 eV-1 for the valence band edge density of states.
Resumo:
Understanding the ontogenetic relationship between juvenile Steller sea lions (Eumetopias jubatus) and their foraging habitat is key to understanding their relationship to available prey and ultimately their survival. We summarize dive and movement data from 13 young-of-the-year (YOY) and 12 yearling Steller sea lions equipped with satellite dive recorders in the Gulf of Alaska and Aleutian Islands (n=18), and Washington (n=7) from 1994 to 2000. A total of 1413 d of transmission (x =56.5 d, range: 14.5–104.1 d) were received. We recorded 222,073 dives, which had a mean depth of 18.4 m (range of means: 5.8−67.9 m; SD=16.4). Alaska YOY dived for shorter periods and at shallower depths (mean depth=7.7 m, mean duration=0.8 min, mean maximum depth=25.7 m, and maximum depth=252 m) than Alaska yearlings (x =16.6 m, 0=1.1 min, x = 63.4 m, 288 m), whereas Washington yearlings dived the longest and deepest (mean depth=39.4 m, mean duration=1.8 min, mean maximum depth=144.5 m, and maximum depth=328 m). Mean distance for 564 measured trips was 16.6 km; for sea lions ≤10 months of age, trip distance (7.0 km) was significantly less than for those >10 months of age (24.6 km). Mean trip duration for 10 of the 25 sea lions was 12.1 h; for sea lions ≤10 months of age, trip duration was 7.5 h and 18.1 h for those >10 months of age. We identified three movements types: long-range trips (>15 km and >20 h), short-range trips (<15 km and <20 h) during which the animals left and returned to the same site, and transits to other haul-out sites. Long-range trips started around 9 months of age and occurred most frequently around the assumed time of weaning, whereas short-range trips happened almost daily (0.9 trips/day, n=426 trips). Transits began as early as 7 months of age, occurred more often after 9 months of age, and ranged between 6.5 and 454 km. The change in dive characteristics coincided with the assumed onset of weaning. These yearling sea lion movement patterns and dive characteristics suggest that immature Steller sea lions are as capable of making the same types of movements as adults.
Resumo:
A model has been developed to predict the erosive wear behaviour of elastomers under conditions of glancing impact by small hard particles. Previous work has shown the erosive wear mechanism of elastomers under these conditions to be similar in nature to that of abrasive wear by a sharp blade. The model presented here was developed from the model of Southern and Thomas for sliding abrasion, by combining their treatment of the growth of surface cracks with a model for particle impact in which the force - displacement relationship for an idealized flat-ended punch on a semi-infinite elastic solid was assumed. In this way an expression for the erosive wear rate was developed, and compared with experimental measurements of wear rate for natural rubber, styrene - butadiene rubber and a highly crosslinked polybutadiene rubber. Good qualitative agreement was found between the predictions of the model and the experimental measurements. The variation of erosion rate with impact velocity, impact angle, particle size, elastic modulus of the material, coefficient of friction and fatigue properties were all well accounted for. Quantitative agreement was less good, and the effects of erosive particle shape could not be accounted for. The reasons for these discrepancies are discussed. © 1992 IOP Publishing Ltd.
Resumo:
Abrasive wear is likely to occur whenever a hard asperity or a trapped hard particle is dragged across a softer surface, and it has been estimated that this form of wear contributes to as many as half of the wear problems that are met in industry. Such damaging hard particles may be external contaminants, products of corrosion or even the debris from previous wear events. During the life of a component, damage caused by individual asperity or particle interactions builds up and, at each stage of its life, the worn surface is the result of many such superimposed wear events. The practical, quantitative prediction of wear rates depends on having both a satisfactory understanding of individual interactions and a suitable procedure for combining these when subsequent contacts are made on a surface whose topography and material properties may have been much changed Irom their initial states. The paper includes some details of an analytical model for the interaction of a representative asperity and the worn surface which can both predict the frictional force and the balance between ploughing, when material is displaced but not lost from the surface, and micromachining or cutting, when actual detachment occurs. Experiments tö !rvvéSuQ8Î8 the validity of the model have been carried out on a novel wear rig which provides very precise control over the position of the asperity and the counterface. This facility, together with that of on-board profilometry, means that it is possible to carry out wear experiments on areas of the surface whose previous deformation history is well known; in this way it is possible to follow the development of a worn surface in a controlled manner as the damage from individual wear events accumulates. Experimental data on the development of such a surface, produced by repeated parallel abrasion, are compared with the predictions of the model. © 1992 IOP Publishing Ltd.
Resumo:
This study aimed at evaluating the production levels in terms of catch estimates of the artisanal fisheries of the Edward-George system in addition to providing information on the facilities and services at landing sites and the composition, magnitude and distribution of fishing effort to guide development and management of the fisheries resources of the Edward and George lakes and Kazinga channel. Specifically, the study was expected to come up with the following outputs:- a) Information on the number of fish landing sites on the basin lakes; b) Information on the facilities available at the fish landing sites to service the fisheries sector ; c) Information on the number of fishers; d) Information on the number and types of fishing crafts; e) Information on the modes of propulsion of the fishing crafts; f) Information on the number types and sizes of fishing gears including the number of illegal fishing gears in the fishery; and g) Recommendations on development and management of the fisheries of the Edward and George lakes and Kazinga channel. h) Beach values in terms of annual catches and annual revenue from the water bodies.
Resumo:
Drosophila (Sophophora) subpulchrella Takamori and Watabe, sp. nov., of the D. suzukii subgroup in the D. melanogaster species group, is described from Japan and southern China, and compared with its sibling species, D. pulchrella Tan et al. distributed i
Resumo:
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by Polymerase Chain Reaction (PCR). PCR products were analyzed using Single Stranded Conformational Polymorphism (SSCP) and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of 8 coral species studied, and there are at least two clades of Symbiodinium from Kish Island. Clade D was detected from 8 of the coral species while clade C90 was found in 2 of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf.
Resumo:
A 3-D model of a superconducting staggered array undulator has been built, which could serve as a powerful tool to solve electromagnetic problems and to realize field optimization of such design. Given the limitation of 2-D simulation for irregular shapes and complex geometries, 3-D models are more desirable for a comprehensive investigation. An optimization method for the undulator peak field is proposed; up to 32% enhancement can be achieved by introducing major segment bulks. Some improvements of the undulator design are obtained by careful analyzing of the simulation results. © 2002-2011 IEEE.