808 resultados para Lubricating oil
Resumo:
Objetivou-se com o presente trabalho, estabelecer a relação entre os pigmentos fotossintéticos extraídos em DMSO e as leituras obtidas no clorofilômetro portátil ClorofiLOG® 1030, gerando modelos matemáticos capazes de predizer os teores de clorofila e de carotenóides em folhas de mamoneira. O trabalho foi conduzido na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Algodão, situada em Campina Grande, Estado da Paraíba, em outubro de 2010. Para a análise indireta, foi utilizado um equipamento portátil, sendo realizada a leitura em discos foliares com diferentes tonalidades de verde, sendo feita, nesses mesmos discos, a determinação da clorofila pelo método clássico. Para a extração da clorofila, utilizaram-se 5 mL de dimetilsulfóxido (DMSO), a qual foi mantida em banho-maria a 70ºC, por 30 minutos, e retirou-se 3 mL da alíquota para leitura em espectrofotômetro nos comprimentos de onda de 470, 646 e 663 nm. Os dados foram submetidos à análise da variância e regressão polinomial. A leitura obtida no clorofilômetro portátil foi a variável dependente, e os pigmentos fotossintéticos determinados pelo método clássico foi a variável independente. Os resultados indicaram que o clorofilômetro portátil ClorofiLOG® 1030, associado a modelos matemáticos, permitiu estimar a concentração dos pigmentos fotossintéticos, exceto a clorofila b, com alta precisão, com economia de tempo e com reagentes normalmente utilizados nos procedimentos convencionais.
Resumo:
Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The addition of soybean oil and Tween 80 was evaluated with the objective of increasing the production of botryosphaeran, an exopolysaccharide (EPS) of the (1 -> 3 ;1 -> 6)-beta-D-glucan type produced by the fungus Botowsphaeria rhodina MAMB-05. Factorial design and analysis by response surface methodology was developed to select the main factors that would affect and enhance EPS production. The optimized culture conditions were: 40g l(-1) glucose with 10ml l(-1) soybean oil, and 4.5 ml l(-1) Tween 80, during 72h cultivation at 28 degrees C (180 rpm) and initial pH 5.7. The predicted result for botryosphaeran production was 8.22 +/- 1.36 g l(-1), and compared with the experimental value of 7.74 +/- 0.13 g l(-1) . Partial characterization of the botryosphaeran produced under the optimized conditions showed one type of polysaccharide with P-glycosidic linkages containing glucose as monosaccharide. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Turnera diffusa Willd. var. afrodisiaca (Ward) Urb. (syn. T aphrodisiaca) (Turneraceae) is a common aromatic plant growing wild in the subtropical regions of America and Africa. Its essential oil was studied by GC and GC-MS. Fifty-four components were characterized and identified, the most abundant being 1,8-cineol (11.4%), opoplenone (10.3%) cadalene (5.1%) and epi-cubenol (4.1%). Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)