886 resultados para LuGre friction
Resumo:
The use of lashing means, for example load securing straps or nets, is often time-consuming, especially for courier, express and parcel-services (CEP) using a lot stops. The following article describes the development of an automated load securing system with a three-dimensional-preformed net. Mainly two components interact in this system. On the one hand, an anti-skid system is integrated, which uses the advantages of a low-friction surface for loading and the anti-slip properties of an adhesive coating for the transport. On the other hand, a flexibly adaptive net consisting of high-performance synthetic fibers and integrated shorteners lash different sized transport units. Especially, the automatic lashing should increase the acceptance of the drivers for the new load securing system.
Resumo:
The near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two-year multi-level measurements from 80-m towers located in an altitude range between 2100 and 2700 m ASL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley nose-shaped wind speed profiles are observed with maximum values occurring at heights between 20 m and 60 m AGL. The flow intensity shows considerable inter-daily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values larger than 20 m s−1. Turbulent mixing appears significant over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and the quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed, based on surface friction velocity and surface inversion intensity. At one of the sites this scale explains about 70% of the case-to-case observed variance of jet nose heights. Further modeling and observational work is needed, however, in order to better define the dynamics, extent and turbulence structure of this flow system, which has significant wind-energy, climatic and environmental implications.
Resumo:
For atmospheric CO2 reconstructions using ice cores, the technique to release the trapped air from the ice samples is essential for the precision and accuracy of the measurements. We present here a new dry extraction technique in combination with a new gas analytical system that together show significant improvements with respect to current systems. Ice samples (3–15 g) are pulverised using a novel centrifugal ice microtome (CIM) by shaving the ice in a cooled vacuum chamber (−27 °C) in which no friction occurs due to the use of magnetic bearings. Both, the shaving principle of the CIM and the use of magnetic bearings have not been applied so far in this field. Shaving the ice samples produces finer ice powder and releases a minimum of 90% of the trapped air compared to 50%–70% when needle crushing is employed. In addition, the friction-free motion with an optimized design to reduce contaminations of the inner surfaces of the device result in a reduced system offset of about 2.0 ppmv compared to 4.9 ppmv. The gas analytical part shows a higher precision than the corresponding part of our previous system by a factor of two, and all processes except the loading and cleaning of the CIM now run automatically. Compared to our previous system, the complete system shows a 3 times better measurement reproducibility of about 1.1 ppmv (1 σ) which is similar to the best reproducibility of other systems applied in this field. With this high reproducibility, no replicate measurements are required anymore for most future measurement campaigns resulting in a possible output of 12–20 measurements per day compared to a maximum of 6 with other systems.
Resumo:
Many rehabilitation robots use electric motors with gears. The backdrivability of geared drives is poor due to friction. While it is common practice to use velocity measurements to compensate for kinetic friction, breakaway friction usually cannot be compensated for without the use of an additional force sensor that directly measures the interaction force between the human and the robot. Therefore, in robots without force sensors, subjects must overcome a large breakaway torque to initiate user-driven movements, which are important for motor learning. In this technical note, a new methodology to compensate for both kinetic and breakaway friction is presented. The basic strategy is to take advantage of the fact that, for rehabilitation exercises, the direction of the desired motion is often known. By applying the new method to three implementation examples, including drives with gear reduction ratios 100-435, the peak breakaway torque could be reduced by 60-80%.
Resumo:
Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.
Resumo:
The interaction between sensory rhodopsin II (SRII) and its transducer HtrII was studied by the time-resolved laser-induced transient grating method using the D75N mutant of SRII, which exhibits minimal visible light absorption changes during its photocycle, but mediates normal phototaxis responses. Flash-induced transient absorption spectra of transducer-free D75N and D75N joined to 120 amino-acid residues of the N-terminal part of the SRII transducer protein HtrII (DeltaHtrII) showed only one spectrally distinct K-like intermediate in their photocycles, but the transient grating method resolved four intermediates (K(1)-K(4)) distinct in their volumes. D75N bound to HtrII exhibited one additional slower kinetic species, which persists after complete recovery of the initial state as assessed by absorption changes in the UV-visible region. The kinetics indicate a conformationally changed form of the transducer portion (designated Tr*), which persists after the photoreceptor returns to the unphotolyzed state. The largest conformational change in the DeltaHtrII portion was found to cause a DeltaHtrII-dependent increase in volume rising in 8 micros in the K(4) state and a drastic decrease in the diffusion coefficient (D) of K(4) relatively to those of the unphotolyzed state and Tr*. The magnitude of the decrease in D indicates a large structural change, presumably in the solvent-exposed HAMP domain of DeltaHtrII, where rearrangement of interacting molecules in the solvent would substantially change friction between the protein and the solvent.
Resumo:
Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal forcing at the terminus. At Helheim Glacier, analysis of geodetic data shows decimeter-level periodic position variations in response to tidal forcing. However, we also observe transient increases of more than 100% in the glacier's responsiveness to such tidal forcing following glacial-earthquake calving events. The timing and amplitude of the changes correlate strongly with the step-like increases in glacier speed and longitudinal strain rate associated with glacial earthquakes. The enhanced response to the ocean tides may be explained by a temporary disruption of the subglacial drainage system and a concomitant reduction of the friction at the ice-bedrock interface, and suggests a new means by which geodetic data may be used to infer glacier properties. Citation: de Juan, J., et al. (2010), Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier, Geophys. Res. Lett., 37, L12501, doi: 10.1029/2010GL043289.
Resumo:
At Engabreen, Norway, an instrumented panel containing a decimetric obstacle was mounted flush With the bed surface beneath 210 m of ice. Simultaneous measurements of normal and shear stresses, ice velocity and temperature were obtained as dirty basal ice flowed past the obstacle. Our measurements were broadly consistent with ice thickness, flow conditions and bedrock topography near the site of the experiment. Ice speed 0.45 m above the bed was about 130 mm d(-1), much less than the surface velocity of 800 mm d(-1) Average normal stress on the panel was 1.0-1.6 MPa, smaller than the expected ice overburden pressure. Normal stress was larger and temperature was lower on the stoss side than on the lee side, in accord with flow dynamics and equilibrium thermodynamics. Annual differences in normal stresses were correlated with changes in sliding speed and ice-flow direction. These temporal variations may have been caused by changes in ice rheology associated with changes in sediment concentration, water content or both. Temperature and normal stress were generally correlated, except when clasts presumably collided with the panel. Temperature gradients in the obstacle indicated that regelation was negligible, consistent with the obstacle size. Melt rate was about 10% of the sliding speed. Despite high sliding speed, no significant ice/bed separation was observed in the lee of the obstacle. Frictional forces between sediment particles in the ice and the panel, estimated from Hallet's (1981) model, indicated that friction accounted for about 5% of the measured bed-parallel force. This value is uncertain, as friction theories are largely untested. Some of these findings agree with sliding theories, others do not.
Resumo:
The Princeton Ocean Model is used to study the circulation in the Gulf of Maine and its seasonal transition in response to wind, surface heat flux, river discharge, and the M-2 tide. The model has an orthogonal-curvature linear grid in the horizontal with variable spacing from 3 km nearshore to 7 km offshore and 19 levels in the vertical. It is initialized and forced at the open boundary with model results from the East Coast Forecast System. The first experiment is forced by monthly climatological wind and heat flux from the Comprehensive Ocean Atmosphere Data Set; discharges from the Saint John, Penobscot, Kennebec, and Merrimack Rivers are added in the second experiment; the semidiurnal lunar tide (M-2) is included as part of the open boundary forcing in the third experiment. It is found that the surface heat flux plays an important role in regulating the annual cycle of the circulation in the Gulf of Maine. The spinup of the cyclonic circulation between April and June is likely caused by the differential heating between the interior gulf and the exterior shelf/slope region. From June to December the cyclonic circulation continues to strengthen, but gradually shrinks in size. When winter cooling erodes the stratification, the cyclonic circulation penetrates deeper into the water column. The circulation quickly spins down from December to February as most of the energy is consumed by bottom friction. While inclusion of river discharge changes details of the circulation pattern, the annual evolution of the circulation is largely unaffected. On the other hand, inclusion of the tide results in not only the anticyclonic circulation on Georges Bank but also modifications to the seasonal circulation.
Resumo:
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.
Resumo:
OBJECTIVES Improvement of skin fibrosis is part of the natural course of diffuse cutaneous systemic sclerosis (dcSSc). Recognising those patients most likely to improve could help tailoring clinical management and cohort enrichment for clinical trials. In this study, we aimed to identify predictors for improvement of skin fibrosis in patients with dcSSc. METHODS We performed a longitudinal analysis of the European Scleroderma Trials And Research (EUSTAR) registry including patients with dcSSc, fulfilling American College of Rheumatology criteria, baseline modified Rodnan skin score (mRSS) ≥7 and follow-up mRSS at 12±2 months. The primary outcome was skin improvement (decrease in mRSS of >5 points and ≥25%) at 1 year follow-up. A respective increase in mRSS was considered progression. Candidate predictors for skin improvement were selected by expert opinion and logistic regression with bootstrap validation was applied. RESULTS From the 919 patients included, 218 (24%) improved and 95 (10%) progressed. Eleven candidate predictors for skin improvement were analysed. The final model identified high baseline mRSS and absence of tendon friction rubs as independent predictors of skin improvement. The baseline mRSS was the strongest predictor of skin improvement, independent of disease duration. An upper threshold between 18 and 25 performed best in enriching for progressors over regressors. CONCLUSIONS Patients with advanced skin fibrosis at baseline and absence of tendon friction rubs are more likely to regress in the next year than patients with milder skin fibrosis. These evidence-based data can be implemented in clinical trial design to minimise the inclusion of patients who would regress under standard of care.
Resumo:
We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold (27, as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a Q(D)*:, which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger (Q(D)*; is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales less than or similar to 1 km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (less than or similar to 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt and Stewart, 2012). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The skinned portions of baseball and softball infields vary widely with respect to soil texture, applied amendments and conditioners, and water management. No studies have been reported that quantify the effects of these varying construction and maintenance practices on the playability of the skinned portions of infields. In Connecticut, USA, skinned infield plots were constructed from five different soils (silt loam, loam, coarse sandy loam, loamy sand, loamy coarse sand) and amended with four rates of calcined clay (0, 4.9, 9.8, 19.6 kg m–2) to determine the effects on surface hardness, traction, and ball-to-surface friction (static and dynamic) at varying soil moisture contents (10, 14, and 18%). Bulk density, saturated hydraulic conductivity, and shear strength of the different soil–calcined clay rate combinations were determined. Increasing the rate of calcined clay decreased bulk density and shear strengths, and increased saturated hydraulic conductivity. Surface hardness increased more with coarse-textured soils and increasing calcined clay rate, but decreased more with fine-textured soils and increasing soil moisture. Increasing the calcined clay rate resulted in decreases in ball-to-surface static friction across all soils and decreased dynamic friction with the fine-textured soils. Increases in soil moisture increased friction in all soils. The fine-textured soils had greater traction than the sandy soils, but no consistent calcined clay or moisture effects on traction were observed. Shear strength of the soils was highly correlated with traction and friction. The results suggest that differences in skinned infield soils are quantifiable, which could lead to the development of playing surface standards.
Resumo:
The double-stranded RNA (dsRNA) activated protein kinase, PKR, is one of the several enzymes induced by interferons and a key molecule mediating the antiviral effects of interferons. PKR contain an N-terminal, double-stranded RNA binding domain (dsRBD), which has two tandem copies of the motifs (dsRBM I and dsRBM II). Upon binding to viral dsRNA, PKR is activated via autophosphorylation. Activated PKR has several substrates; one of the examples is eukaryotic translation initiation factor 2 (eIF2a). The phosphorylation of eIF2a leads to the termination of cell growth by inhibiting protein synthesis in response to viral infection. The objective of this project was to characterize the dsRBM I and define the dsRNA binding using biophysical methods. First, the dsRBM I gene was cloned from a pET-28b to a pET-11a expression plasmid. N-terminal poly-histidine tags on pET-28b are for affinity purification; however, these tags can alter the structure and function of proteins, thus the gene of dsRBM I was transferred into the plasmid without tags (pET-11a) and expressed as a native protein. The dsRBM I was transformed into and expressed by Rosetta DE3plyS expression cells. Purification was done by FPLC using a Sepharose IEX ion exchange followed by Heparin affinity column; yielding pure protein was assayed by PAGE. Analytical Ultracentrifugation, Sedimentation Velocity, was used to characterize free solution association state and hydrodynamic properties of the protein. The slight decrease in S-value with concentration is due to the hydrodynamic non-ideality. No self association was observed. The obtained molecule weight was 10,079 Da. The calculated sedimentation constant at zero concentration at 20°C in water was 1.23 and its friction coefficient was 3.575 ´ 10-8. The frictional ratio of sphere and dsRBM I became 1.30. Therefore, dsRBM I must be non-globular and more asymmetric shape. Isolated dsRBM I exhibits the same tertiary fold as compared to context in the full domain but it exhibited weaker binding affinity than full domain to a 20 bp dsRNA. However, when the conditions allowed for its saturation, dsRBM I to 20 bp dsRNA has similar stoichiometry as full dsRBD.
Resumo:
Transaction costs, one often hears, are the economic equivalent of friction in physical systems. Like physicists, economists can sometimes neglect friction in formulating theories; but like engineers, they can never neglect friction in studying how the system actually does let alone should work. Interestingly, however, the present-day economics of organization also ignores friction. That is, almost single-mindedly, the literature analyzes transactions from the point of view of misaligned incentives and (especially) transaction-specific assets. The costs involved are certainly costs of running the economic system in some sense, but they are not obviously frictions. Stories about frictions in trade are not nearly as intriguing as stories about guileful trading partners and expensive assets placed at risk. But I will argue that these seemingly dull categories of cost what Baldwin and Clark (2003) call mundane transaction costs actually have a secret life. They are at least as important as, and quite probably far more important than, the more glamorous costs of asset specificity in explaining the partition between firm and market. These costs also have a secret life in another sense: they have a secret life cycle. I will argue that these mundane transaction costs provide much better material for helping us understanding how the boundaries among firms, markets, and hybrid forms change over time.