927 resultados para Load bearing system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of conveying practice demonstrates that belt conveyors provide a versatile and. much-used method of transporting bulk materials, but a review of belting manufacturers' design procedures shows that belt design and selection rules are often based on experience with all-cotton belts no longer in common use, and are net completely relevant to modern synthetic constructions. In particular, provision of the property "load support", which was not critical with cotton belts, is shown to determine the outcome of most belt selection exercises and lead to gross over specification of other design properties in many cases. The results of an original experimental investigation into this property, carried out to determine the belt and conveyor parameters that affect it, how the major role that belt stiffness plays in its provision; the basis for a belt stiffness test relevant to service conditions is given. A proposal for a more rational method of specifying load support data results from the work, but correlation of the test results with service performance is necessary before the absolute toad support capability required from a belt for given working conditions can be quantified. A study to attain this correlation is the major proposal for future work resulting from the present investigation, but a full review of the literature on conveyor design and a study of present practice within the belting industry demonstrate other, less critical, factors that could profitably be investigated. It is suggested that the most suitable method of studying these would be a rational data collection system to provide information on various facets of belt service behaviour; a basis for such a system is proposed. In addition to the work above, proposals for simplifying the present belt selection methods are made and a strain transducer suitable for use in future experimental investigations is developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study some common types of Rolling Bearing vibrations are analysed in depth both theoretically and experimentally. The study is restricted to vibrations in the radial direction of bearings having pure radial load and a positive radial clearance. The general vibrational behaviour of such bearings has been investigated with respect to the effects of varying compliance, manufacturing tolerances and the interaction between the bearing and the machine structure into which it is fitted. The equations of motion for a rotor supported by a bearing in which the stiffness varies with cage position has been set up and examples of solutions,obtained by digital simulation. is given. A method to calculate amplitudes and frequencies of vibration components due to out of roundness of the inner ring and varying roller diameters has been developed. The results from these investigations have been combined with a theory for bearing/machine frame interaction using mechanical impedance technique, thereby facilitating prediction of the vibrational behaviour of the whole set up. Finally. the effects of bearing fatigue and wear have been studied with particular emphasis on the use of vibration analysis for condition monitoring purposes. A number of monitoring methods have been tried and their effectiveness discussed. The experimental investigation was carried out using two purpose built rigs. For the purpose of analysis of the experimental measurements a digital mini computer was adapted for signal processing and a suite of programs was written. The program package performs several of the commonly used signal analysis processes and :include all necessary input and output functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed fiber sensing system based on ultraweak FBGs (UWFBGs) assisted polarization optical time-domain reflectometry (POTDR) is proposed for load and vibration sensing with improved signal-to-noise ratio (SNR) and sensitivity. UWFBGs with reflectivity higher than Rayleigh scattering coefficient per pulse are induced into a POTDR system to increase the intensity of the back signal. The performance improvement of the system has been studied. The numerical analysis has shown that the SNR and sensitivity of the system can be effectively improved by integrating UWFBGs along the whole sensing fiber, which has been clearly proven by the experiment. The experimental results have shown that by using UWFBGs with 1.1 x 10-5 reflectivity and 10-m interval distance, the SNR is improved by 11 dB, and the load and vibration sensitivities of the POTDR are improved by about 10.7 and 9 dB, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rework strategies that involve different checking points as well as rework times can be applied into reconfigurable manufacturing system (RMS) with certain constraints, and effective rework strategy can significantly improve the mission reliability of manufacturing process. The mission reliability of process is a measurement of production ability of RMS, which serves as an integrated performance indicator of the production process under specified technical constraints, including time, cost and quality. To quantitatively characterize the mission reliability and basic reliability of RMS under different rework strategies, rework model of RMS was established based on the method of Logistic regression. Firstly, the functional relationship between capability and work load of manufacturing process was studied through statistically analyzing a large number of historical data obtained in actual machining processes. Secondly, the output, mission reliability and unit cost in different rework paths were calculated and taken as the decision variables based on different input quantities and the rework model mentioned above. Thirdly, optimal rework strategies for different input quantities were determined by calculating the weighted decision values and analyzing advantages and disadvantages of each rework strategy. At last, case application were demonstrated to prove the efficiency of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since privatisation, maintenance of DNO LV feeder maximum demand information has gradually demised in some Utility Areas, and it is postulated that lack of knowledge about 11kV and LV electrical networks is resulting in a less economical and energy efficient Network as a whole. In an attempt to quantify the negative impact, this paper examines ten postulated new connection scenarios for a set of real LV load readings, in order to find the difference in design solutions when LV load readings were and were not known. The load profiles of the substations were examined in order to explore the utilisation profile. It was found that in 70% of the scenarios explored, significant cost differences were found. These cost differences varied by an average of 1000%, between schemes designed with and without load readings. Obviously, over designing a system and therefore operating more, underutilised transformers becomes less financially beneficial and less energy efficient. The paper concludes that new connection design is improved in terms of cost when carried out based on known LV load information and enhances the case for regular maximum feeder demand information and/or metering of LV feeders. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historically, grapevine (Vitis vinifera L.) leaf characterisation has been a driving force in the identification of cultivars. In this study, ampelometric (foliometric) analysis was done on leaf samples collected from hand-pruned, mechanically pruned and minimally pruned ‘Sauvignon blanc’ and ‘Syrah’ vines to estimate the impact of within-vineyard variability and a change in bud load on the stability of leaf properties. The results showed that within-vineyard variability of ampelometric characteristics was high within a cultivar, irrespective of bud load. In terms of the O.I.V. coding system, zero to four class differences were observed between minimum and maximum values of each characteristic. The value of variability of each characteristic was different between the three levels of bud load and the two cultivars. With respect to bud load, the number of shoots per vine had a significant effect on the characteristics of the leaf laminae. Single leaf area and lengths of veins changed significantly for both cultivars, irrespective of treatment, while angle between veins proved to be a stable characteristic. A large number of biometric data can be recorded on a single leaf; the data measured on several leaves, however, are not necessarily unique for a specific cultivar. The leaf characteristics analysed in this study can be divided into two groups according to the response to a change in bud load, i.e. stable (angles between the veins, depths of sinuses) and variable (length of the veins, length of the petiole, single leaf area). The variable characteristics are not recommended to be used in cultivar identification, unless the pruning method/bud load is known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined periphyton along transects in five Everglades marshes and related compositional and functional aspects to phosphorus(P ) gradients caused by enriched inflows. Results were compared to those of a P-addition experiment in a pristine Everglades marsh. While the water total P (TP) concentration was not related to P load in the marshes or experiment the concentration of TP in periphyton was strongly correlated with the distance from the P source. Increased P concentration in periphyton was associated with a loss of biomass,p articularly of the calcifying mat-forming matrix, regardless of the growth form of the periphyton (epiphytic, floating,or epilithic). Diatom species composition was also strongly related to P availability, but the TP optima of many species varied among marshes. Enriched periphyton communities were found 14 km downstream of P inputs to one marsh that has been receiving enhanced P loads for decades, where other studies using different biotic indicators show negligible change in the same marsh. Although recovery trajectories are unknown, periphyton indicators should serve as excellent metrics for the progression or amelioration of P-related effects in the Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.