999 resultados para Lead germanate glasses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cation-driven allosteric G-quadruplex DNAzyme (PW17) was utilized to devise a conceptually new class of DNA logic gate based on cation-tuned ligand binding and release. K+ favors the binding of hemin to parallel-stranded PW17, thereby promoting the DNAzyme activity, whereas Pb2+ induces PW17 to undergo a parallel-to-antiparallel conformation transition and thus drives hemin to release from the G-quadruplex, deactivating the DNAzyme. Such a K+-Pb2+ switched G-quadruplex, in fact, functions as a two-input INHIBIT logic gate. With the introduction of another input EDTA, this G-quadruplex can be further utilized to construct a reversibly operated IMPLICATION gate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G composite film not only exhibited improved sensitivity for the metal ion detections, but also alleviated the interferences due to the synergistic effect of graphene nanosheets and Nafion. The linear calibration curves ranged from 0.5 mu g L-1 to 50 mu g L-1 for Pb2+ and 1.5 mu g L-1 to 30 mu g L-1 for Cd2+. respectively. The detection limits (S/N = 3) were estimated to be around 0.02 mu g L-1 for Pb2+ and Cd2+. The practical application of the proposed method was verified in the water sample determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blue long-lasting phosphorescence (LLP) phenomenon was observed for Eu2+-doped SrO-B2O3 glasses prepared in the reducing atmosphere. The phosphorescence peaks at about 450 nm due to the 4f5d -> 4f transition of Eu2+. With the doping of different amounts of Eu2+, the concentration-quenching phenomenon was observed for both the LLP and photoluminescence of the glasses, and the critical concentration for the two cases was same, i.e., 0.02 mol% Eu2+. And by the investigation of the TL curves, the content of Eu2+ had an effect on the trap depth of the samples. At last the possible mechanism of the LLP of the samples was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2+ and Ce3+. The methods of photoluminescence, thermoluminescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3+ ions poisoned the phosphorescence emission of Eu2+ because of the competition to obtain the trapped electron. The phosphorescence of Ce3+ in the sample decays more quickly than that of Eu2+, which is suggested for the reason that the emission energy of Ce3+ is higher or the distance between Ce3+ and electron traps of the glasses is longer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near infrared long lasting phosphorescence of Yb3+ is observed in Yb3+ and Mn2+ codoped zinc borosilicate glasses. Compared with the glasses solely activated by Mn2+, when the Yb3+ ion is codoped, the red long lasting phosphorescence of the samples is largely improved in both brightness and persistent time but the photostimulated long lasting phosphorescence is greatly depressed. It is considered that the appearance of the phosphorescence of Yb3+ is due to the alteration of the energy transfer channel; additionally, Yb3+ also changes the trap depth of the glasses with the shallower trap predominating therefrom the red long lasting phosphorescence is improved and the photostimulated long lasting phosphorescence is degraded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samarium and manganese co-doped zinc borosilicate storage glasses were prepared by high temperature solid state method. The effect of doping samarium on the defect of Mn activated sample was studied by means of thermoluminescence spectra. It was found that the shallower traps of the sample predominate with the addition of samarium, as a result, the phosphorescence and storage properties of the manganese doped zinc borosilicate glasses were greatly changed.