965 resultados para Layout (Printing)
Resumo:
针对当前网状信息可视化技术忽略了网状信息节点的可视信息的问题,提出一种面向网状信息的Radial+Focus可视化技术。首先介绍网状信息节点的信息详细度与先验重要度,并研究通过节点的交互历史计算节点的先验重要度的方法;然后研究了基于节点先验重要度的Radial+Focus布局算法;最后,给出了Radial+Focus可视化技术的应用实例和实验评估。实验评估表明,该技术能自然、高效地可视化网状信息,为用户对网状信息关系及网状信息节点的可视信息的分析提供有力的支持。
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.
Resumo:
In this paper, low surface energy separators With undercut structures were fabricated through a full solution process, These low Surface energy separators are more suitable for application in inkjet printed passive-matrix displays of polymer light-emitting diodes. A patterned PS film was formed on the P4VP/photoresist film by microtransfer printing firstly. Patterned Au-coated Ni film was formed on the uncovered P4VP/photoresist film by electroless deposition. This metal film was used as mask to pattern the photoresist layer and form undercut structures with the patterned photoresist layer. The surface energy of the metal film also decreased dramatically from 84.6 mj/m(2) to 21.1 mJ/m(2) by modification of fluorinated mercaptan self-assemble monolayer on Au surface. The low surface energy separators were used to confine the flow of inkjet printed PFO solution and improve the patterning resolution of inkjet printing successfully. Separated PFO stripes, complement with the pattern of the separators, formed through inkjet printing.
Resumo:
A simple and efficient method for patterning polymeric semiconductors for applications in the field of organic electronics is proposed. The entire polymer layer, except for the desired pattern, is selectively lifted off from a flat poly(dimethylsiloxane) (PDMS) stamp surface by an epoxy mold with a relief pattern. This is advantageous because the elastic deformation of the PDMS stamp around protrusions of a patterned stamp under pressure can assist the plastic deformation of a polymer film along the pattern edges, yielding large area and high quality patterns, and the PDMS surface has low surface energy, which allows the easy removal of the polymer film.
Resumo:
Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.
Resumo:
A PEO-tethered layer on a PDMS (polydimethylsiloxane) cross-linked network has been prepared by a swelling-deswelling process. During swelling, the PDMS block of a PDMS-b-PEO diblock copolymer penetrates into the PDMS substrate and interacts with PDMS chains because of the van der Waals force and hydrophobic interaction between them. Upon deswelling, the PDMS block is trapped in the PDMS matrix while the PEO, as a hydrophilic block, is tethered to the surface. The PEO-tethered layer showed stability when treated in water for 16 h. The surface fraction of PEO and the wetting property of the PEO-tethered PDMS surface can be controlled by the cross linking density of the PDMS matrix. A patterned PEO-tethered layer on a PDMS network was also created by microcontact printing and water condensation figures (CFs) were used to study the patterned surface with different wetting properties.
Resumo:
The substrates with regular patterns of self-assembly monolayers (SAMs) produced by microcontact printing with octadecyltrichlorosilane (OTS) was employed to direct thin polystyrene dewetting to fabricate ordered micrometer scale pattern. The pattern sizes and pattern fashion can be manipulated by controlling the experimental parameters. The pattern formation mechanisms have been discussed. The dewetting pattern can be transferred to form PDMS stamp for future microfabrication process.
Resumo:
The pattern evolution processes of thin polystyrene (PS) film on chemically patterned substrates during dewetting have been investigated experimentally. The substrates have patterns of self-assembly monolayers produced by microcontact printing with octadecyltrichlorosilane. Optical microscopy and atomic force microscopy images reveal that ordered micrometer scale pattern can be created by surface direct dewetting. Various pattern sizes and pattern complexities can be achieved by controlling the experimental parameters. The dewetting pattern has been transferred to form PDMS stamp for soft lithography.
Resumo:
介绍在Labview的开发环境下,装配检测生产线监控与管理系统的开发方法。该系统实现了检测数据的人机界面显示,查询打印,统计过程控制(SPC)以及每月的不合格工件计数。统计过程控制(SPC)实现了对生产线的实时监控及质量管理,其他三个软件模块实现了对生产线的自动化生产管理。这种模块化的生产线管理系统对设计同类软件具有借鉴意义。
Resumo:
简要介绍了物流的发展现状 ,详细描述了基于CAN总线的物流拣选系统的结构、供电方式和参数设定方法 ,并为系统硬件设计中的电源转换、总线驱动和地址译码等公共电路以及总线控制器、电子标签和指示灯控制器等主要设备提供了设计方案 ,为系统软件设计中的C5 1编译、通信协议、命令类型和程序控制规划等问题给出了相应的解决方法 ,还与进口同类产品的性能和价格进行了比较
Resumo:
以某汽车变速箱装配生产线制造系统为背景,应用多Agent制造及Holon制造模式改造传统装配生产线以提升其柔性与重构能力·针对基于agent与holon混合思想的可重构装配生产线的基础框架与实现等理论提供分析验证环境,提出应用数字制造技术构建面向可重构装配线的数字仿真验证平台·在分析面向重构装配线的仿真平台功能特征的基础上,构建了数字仿真验证平台的框架·研究了仿真平台开发中的系统集成、可视化仿真、可重构装配线性能分析等关键技术,最后给出了仿真平台的实例系统·
Resumo:
制造系统的设备布局与生产率和生产成本密切相关 ,布局设计是制造系统设计者面临的关键问题之一。文章针对布局问题的平方分派模型 ,构建了一种布局设计的混合智能优化算法———遗传退火算法 ,并分析了算法实现的方法。实例表明遗传退火算法的高效性。
Resumo:
讨论了水下机器人远程通信光纤微缆的动力学问题,研究分析了在海洋层流条件下水下机器人的运动对光纤微缆张力的影响,在仿真分析的基础上提出了对光纤微缆收放系统的设计要求并给出了概念设计方案。
Resumo:
水下机械手作为水下机器人通用作业工具得到广泛地应用,目前水下机械手的主要操作方式为主从方式。虽然主从方式具有操作直观,灵活的特点,但难于完成需要精确定位,轨迹控制的水下作用,如海洋石油钻井平台导管架的检查作用。为了扩展水下机器人的作业能力,提高水下作业智能化程度,沈阳自动化所承担国家863课题“水下虚拟遥操作与监控机械手系统”关键技术的研究工作。作者参加了此课题的研究工作,以Schilling水下机械手为研究对象,深入研究机械手的作用功能,对机械手的逆运动学,焊缝空间轨迹规划作了深入的研究,形成本文阐述的主要内容。由于Schilling水下机械手各关节之间的连接参数中存在多个偏距,其运动学逆解不能简单由解析方式给出。机械手进行控制与轨迹规划等操作必须找到一种快速求解的方法。本篇文章得出一种基于信赖域法的机械手运动学逆解算法。由于该算法具有收敛速度快的特点,故可以被应用于在线求解机械手运动学逆解;由于没有直接求解二阶导数,故不存在奇异解的问题。经理论分析和实验证明该方法在解决水下监控机械手在线跟踪水下结构物空间轨迹的技术问题具有较好的效果。作为课题的实际应用背景的导管架焊缝曲面为一复杂的空间曲面。为了实现课题的研究目标,本课题不仅要求解焊缝的轨迹,而且要给出其法线方向。对于这样一个问题,用空间解析几何和微分几何方法是很难求解的,本文给出了一种基于B样条参数曲面及曲面求交的方法,具有速度快,通用性强的优点。
Resumo:
本文主要介绍用于图象数据处理的 CCD-微机系统。该系统使用电荷耦合器件(CCD)作为传感器,并与微型计算机连接,进行图象数据的采集和处理。系统还包括有光学系统、CCD 驱动控制线路、计算机 I/O 接口和应用软件。数据采集程序用汇编语言编写,数据处理和打印程序用 BASIC 语言编写,整个软件用BASIC 语言编写的程序管理。应用该系统曾对静止和运动物体尺寸进行过非接触测量,重复性很好。