983 resultados para Layer thickness
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To compare the central corneal thickness (CCT) of patients with systemic sclerosis (SSc) and control subjects. Methods: The study group comprised 37 consecutive patients with SSc, and the control group comprised 23 healthy individuals similar in age and sex. CCT value was measured by ultrasound pachymetry. Results: In the SSc group, the mean CCT in the right eye was 534.9 +/- 33.5 mu m and 536.9 +/- 32.4 mu m in the left eye. In the control group, the mean CCT was 533.0 +/- 32.9 mu m in the right eye and 533.1 +/- 33.6 mu m in the left eye. The mean CCT was not significantly different in the SSc group compared with the control group for both the right (P = 0.83) and left (P = 0.67) eyes. Conclusions: CCT measurements do not significantly differ in patients with SSc compared with healthy control subjects.
Resumo:
Izenman and Sommer (1988) used a non-parametric Kernel density estimation technique to fit a seven-component model to the paper thickness of the 1872 Hidalgo stamp issue of Mexico. They observed an apparent conflict when fitting a normal mixture model with three components with unequal variances. This conflict is examined further by investigating the most appropriate number of components when fitting a normal mixture of components with equal variances.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
PURPOSE: To evaluate the impact of atypical retardation patterns (ARP) on detection of progressive retinal nerve fiber layer (RNFL) loss using scanning laser polarimetry with variable corneal compensation (VCC). DESIGN: Observational cohort study. METHODS: The study included 377 eyes of 221 patients with a median follow-up of 4.0 years. Images were obtained annually with the GDx VCC (Carl Zeiss Med, itec Inc, Dublin, California, USA), along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. Progression was determined by the Guided Progression Analysis software for SAP and by masked assessment of stereophotographs by expert graders. The typical scan score (TSS) was used to quantify the presence of ARPs on GDx VCC images. Random coefficients models were used to evaluate the relationship between ARP and RNFL thickness measurements over time. RESULTS: Thirty-eight eyes (10%) showed progression over time on visual fields, stereophotographs, or both. Changes in TSS scores from baseline were significantly associated with changes in RNFL thickness measurements in both progressing and nonprogressing eyes. Each I unit increase in TSS score was associated with a 0.19-mu m decrease in RNFL thickness measurement (P < .001) over time. CONCLUSIONS: ARPs had a significant effect on detection of progressive RNFL loss with the GDx VCC. Eyes with large amounts of atypical patterns, great fluctuations on these patterns over time, or both may show changes in measurements that can appear falsely as glaucomatous progression or can mask true changes in the RNFL. (Am J Ophthalmol 2009;148:155-163. (C) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
Objective. The purpose of this study was to estimate the Down syndrome detection and false-positive rates for second-trimester sonographic prenasal thickness (PT) measurement alone and in combination with other markers. Methods. Multivariate log Gaussian modeling was performed using numerical integration. Parameters for the PT distribution, in multiples of the normal gestation-specific median (MoM), were derived from 105 Down syndrome and 1385 unaffected pregnancies scanned at 14 to 27 weeks. The data included a new series of 25 cases and 535 controls combined with 4 previously published series. The means were estimated by the median and the SDs by the 10th to 90th range divided by 2.563. Parameters for other markers were obtained from the literature. Results. A log Gaussian model fitted the distribution of PT values well in Down syndrome and unaffected pregnancies. The distribution parameters were as follows: Down syndrome, mean, 1.334 MoM; log(10) SD, 0.0772; unaffected pregnancies, 0.995 and 0.0752, respectively. The model-predicted detection rates for 1%, 3%, and 5% false-positive rates for PT alone were 35%, 51%, and 60%, respectively. The addition of PT to a 4 serum marker protocol increased detection by 14% to 18% compared with serum alone. The simultaneous sonographic measurement of PT and nasal bone length increased detection by 19% to 26%, and with a third sonographic marker, nuchal skin fold, performance was comparable with first-trimester protocols. Conclusions. Second-trimester screening with sonographic PT and serum markers is predicted to have a high detection rate, and further sonographic markers could perform comparably with first-trimester screening protocols.
Resumo:
We studied the anisotropic aggregation of spherical latex particles dispersed in a lyotropic liquid crystal presenting three nematic phases; calamitic, biaxial, and discotic. We observed that in the nematic calamitic phase aggregates of latex particles are formed, which become larger and anisotropic in the vicinity of the transition to the discotic phase, due to a coalescence process. Such aggregates are weakly anisotropic and up to 50 mu m long and tend to align parallel to the director field. At the transition to the discotic phase, the aggregates dissociated and re-formed when the system was brought back to the calamitic phase. This shows that the aggregation is due to attractive and repulsive forces generated by the particular structure of the nematic phase. The surface-induced positional order was investigated by surface force apparatus experiments with the lyotropic system confined between mica surfaces, revealing the existence of a presmectic wetting layer around the surfaces and oscillating forces of increasing amplitude as the confinement thickness was decreased. We discuss the possible mechanisms responsible for the reversible aggregation of latex particles, and we propose that capillary condensation of the N(C) phase, induced by the confinement between the particles, could reduce or remove the gradient of order parameter, driving the transition of aggregates from solidlike to liquidlike and gaslike.
Resumo:
PURPOSE. To evaluate the effect of disease severity and optic disc size on the diagnostic accuracies of optic nerve head (ONH), retinal nerve fiber layer (RNFL), and macular parameters with RTVue (Optovue, Fremont, CA) spectral domain optical coherence tomography (SDOCT) in glaucoma. METHODS. 110 eyes of 62 normal subjects and 193 eyes of 136 glaucoma patients from the Diagnostic Innovations in Glaucoma Study underwent ONH, RNFL, and macular imaging with RTVue. Severity of glaucoma was based on visual field index (VFI) values from standard automated perimetry. Optic disc size was based on disc area measurement using the Heidelberg Retina Tomograph II (Heidelberg Engineering, Dossenheim, Germany). Influence of disease severity and disc size on the diagnostic accuracy of RTVue was evaluated by receiver operating characteristic (ROC) and logistic regression models. RESULTS. Areas under ROC curve (AUC) of all scanning areas increased (P < 0.05) as disease severity increased. For a VFI value of 99%, indicating early damage, AUCs for rim area, average RNLI thickness, and ganglion cell complex-root mean square were 0.693, 0.799, and 0.779, respectively. For a VFI of 70%, indicating severe damage, corresponding AUCs were 0.828, 0.985, and 0.992, respectively. Optic disc size did not influence the AUCs of any of the SDOCT scanning protocols of RTVue (P > 0.05). Sensitivity of the rim area increased and specificity decreased in large optic discs. CONCLUSIONS. Diagnostic accuracies of RTVue scanning protocols for glaucoma were significantly influenced by disease severity. Sensitivity of the rim area increased in large optic discs at the expense of specificity. (Invest Ophthalmol Vis Sci. 2011;92:1290-1296) DOI:10.1167/iovs.10-5516
Resumo:
Purpose: To evaluate retinal nerve fiber layer (RNFL), optic nerve head (ONH), and macular thickness measurements for glaucoma detection using the RTVue spectral domain optical coherence tomograph. Design: Diagnostic, case-control study. Participants: One hundred forty eyes of 106 glaucoma patients and 74 eyes of 40 healthy subjects from the Diagnostic Innovations in Glaucoma Study (DIGS). Methods: All patients underwent ocular imaging with the commercially available RTVue. Optic nerve head, RNFL thickness, and macular thickness scans were obtained during the same visit. Receiver operating characteristic (ROC) curves and sensitivities at fixed specificities (80% and 95%) were calculated for each parameter. Main Outcome Measures: Areas under the ROC curves (AUC) and sensitivities at fixed specificities of 80% and 95%. Results: The AUC for the RNFL parameter with best performance, inferior quadrant thickness, was significantly higher than that of the best-performing ONH parameter, inferior rim area (0.884 vs 0.812, respectively; P = 0.04). There was no difference between ROC curve areas of the best RNFL thickness parameters and the best inner macular thickness measurement, ganglion cell complex root mean square (ROC curve area = 0.870). Conclusions: The RTVue RNFL and inner retinal macular thickness measurements had good ability to detect eyes with glaucomatous visual field loss and performed significantly better than ONH parameters.
Resumo:
PURPOSE. To evaluate the effect of disease severity on the diagnostic accuracy of the Cirrus Optical Coherence Tomograph (Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) for glaucoma detection. METHODS. One hundred thirty-five glaucomatous eyes of 99 patients and 79 normal eyes of 47 control subjects were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS). The severity of the disease was graded based on the visual field index (VFI) from standard automated perimetry. Imaging of the retinal nerve fiber layer (RNFL) was obtained using the optic disc cube protocol available on the Cirrus HD-OCT. Pooled receiver operating characteristic (ROC) curves were initially obtained for each parameter of the Cirrus HD-OCT. The effect of disease severity on diagnostic performance was evaluated by fitting an ROC regression model, with VFI used as a covariate, and calculating the area under the ROC curve (AUCs) for different levels of disease severity. RESULTS. The largest pooled AUCs were for average thickness (0.892), inferior quadrant thickness (0.881), and superior quadrant thickness (0.874). Disease severity had a significant influence on the detection of glaucoma. For the average RNFL thickness parameter, AUCs were 0.962, 0.932, 0.886, and 0.822 for VFIs of 70%, 80%, 90%, and 100%, respectively. CONCLUSIONS. Disease severity had a significant effect on the diagnostic performance of the Cirrus HD-OCT and thus should be considered when interpreting results from this device and when considering the potential applications of this instrument for diagnosing glaucoma in the various clinical settings. (Invest Ophthalmol Vis Sci. 2010;51:4104-4109) DOI:10.1167/iovs.094716
Resumo:
PURPOSE. To evaluate the relationship between pattern electroretinogram (PERG) amplitude, macular and retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), and visual field (VF) loss on standard automated perimetry (SAP) in eyes with temporal hemianopia from chiasmal compression. METHODS. Forty-one eyes from 41 patients with permanent temporal VF defects from chiasmal compression and 41 healthy subjects underwent transient full-field and hemifield (temporal or nasal) stimulation PERG, SAP and time domain-OCT macular and RNFL thickness measurements. Comparisons were made using Student`s t-test. Deviation from normal VF sensitivity for the central 18 of VF was expressed in 1/Lambert units. Correlations between measurements were verified by linear regression analysis. RESULTS. PERG and OCT measurements were significantly lower in eyes with temporal hemianopia than in normal eyes. A significant correlation was found between VF sensitivity loss and fullfield or nasal, but not temporal, hemifield PERG amplitude. Likewise a significant correlation was found between VF sensitivity loss and most OCT parameters. No significant correlation was observed between OCT and PERG parameters, except for nasal hemifield amplitude. A significant correlation was observed between several macular and RNFL thickness parameters. CONCLUSIONS. In patients with chiasmal compression, PERG amplitude and OCT thickness measurements were significant related to VF loss, but not to each other. OCT and PERG quantify neuronal loss differently, but both technologies are useful in understanding structure-function relationship in patients with chiasmal compression. (ClinicalTrials.gov number, NCT00553761.) (Invest Ophthalmol Vis Sci. 2009; 50: 3535-3541) DOI:10.1167/iovs.08-3093
Resumo:
Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Human immunodeficiency virus (HIV)associated lipodystrophy syndrome (LS) includes body composition and metabolic alterations. Lack of validated criteria and tools make difficult to evaluate body composition in this group. Objective: The aim of the study was to compare different methods to evaluate body composition between Brazilians HIV subjects with (HIV+LIPO+) or without LS (HIV+LIPO-) and healthy subjects (Control). Methods: in a cross-sectional analyses, body composition was measured by bioelectrical impedance analysis (BIA), skinfold thickness (SF) and dual-energy x-ray absorptiometry (DXA) in 10 subjects from HIV+LIPO+ group; 22 subjects from HIV+LIPO- group and 12 from Control group. Results: There were no differences in age and body mass index (BMI) between groups. The fat mass (FM) (%) estimated by SF did not correlate with DXA in HIV+LIPO+ group (r = 0,46/p >0,05) and had fair agreement in both HIV groups (HIV+LIPO+ =0,35/ HIV+ LIPO- = 0,40). BIA had significant correlation in all groups (p < 0,05) and strong agreement, meanly in HIV groups, for FM (HIV+LIPO+ = 0,79/ HIV+LIPO- = 0,85/Control = 0,60) and for fat free mass (FFM) (HIV+LIPO+ = 0,93/ HIV+LIPO- = 0,92 / Control = 0,73). Discussion: Total fat mass can be measured by BIA with good precision, but not by SF in HIV-infected patients with LS. Segmental BIA, triciptal SF, circumferences of arms, waist and legs maybe alternatives that need more studies.