992 resultados para Laser damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By making use of the evolution equation of the damage field as derived from the statistical mesoscopic damage theory, we have preliminarily examined the inhomogeneous damage field in an elastic-plastic model under constant-velocity tension. Three types of deformation and damage field evolution are presented. The influence of the plastic matrix is examined. It seems that matrix plasticity may defer the failure due to damage evolution. A criterion for damage localization is consistent with the numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense tha

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In heterogeneous brittle media, the evolution of damage is strongly influenced by the multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous medium whose initial shear strength follows the Weibull distribution. Damage is induced through the application of the Coulomb failure criterion to each element, and the element mesh is refined where the failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which represents rapid coalescence of damage at the catastrophe transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coatings of TiCp reinforced composite have been produced by laser cladding. Two kinds of coating with different TiCp origins were investigated, i.e. undissolved TiCp and in situ TiCp. For undissolved TiCp, epitaxial growth of TiC, precipitation of CrB, and a chemical reaction occur at phase interfaces, and nanoindentation loading curves show pop in marks caused by the plastic deformation associated with crack formation or debonding of TiCp from the matrix. As for in situ TiCp, no pop in mark appears. Meanwhile, in situ TiCp produces hardness and elastic modulus values that are higher than those produced by the coating that contains undissolved TiCp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess the safety of high-energy solid propellants, the effects of damage on deflagration-to-detonation transition (DDT) in a nitrate ester plasticized polyether (NEPE) propellant, is investigated. A comparison of DDT in the original and impacted propellants was studied in steel tubes with synchronous optoelectronic triodes and strain gauges. The experimental results indicate that the microstructural damage in the propellant enhances its transition rate from deflagration to detonation and causes its danger increase. It is suggested that the mechanical properties of the propellant should be improved to restrain its damage so that the likelihood of DDT might be reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of the fabrication of coatings for elevated-temperature structural applications by laser cladding MoSi2 powder on steel was investigated. A dense and crack-free fine coating, well-bonded with the substrate has been obtained by this technique. This coating consists of FeMoSi, Fe2Si and a small amount of Mo5Si3 due to dilution of the substrate in the coating. The microstruelure of the coating is characterized of typical fine dendrites. The dendrites are composed of FeMoSi primary phase, and the interdendritic areas are two eutectic phases of FeMoSi and Fe2Si. The hardness of the coating reaches 845 Hv(0.5), 3.7 times larger than that of the steel substrate (180Hv(0.5)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown in CA simulations and data analysis of earthquakes that declustered or characteristic large earthquakes may occur with long-range stress redistribution. In order to understand long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in heterogeneous media may be a plausible mechanism governing main shocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laser-discrete quenched steel (LDQS) substrate/as-deposited chromium (top high-contraction (HC) and underlying low-contraction (LC) chromium) system was investigated by dissolving coatings in order to reveal the mechanism that the service life of the coated parts is largely improved using the hybrid technique of laser pre-quenching plus chromium post-depositing. It was found that the surface characteristics of the substrate, LC and HC chromium layer can be simultaneously revealed owing to the dissolution edge effect of chromium coatings. Moreover, the periodical gradient morphologies of the LDQS substrate are clearly shown: the surfaces of laser transformation-hardened regions are rather smooth; a lot of fine micro-holes exist in the transition zones; there are many micro-dimples in the original substrate. Furthermore, the novel method of dissolving coatings with sharp interfaces may be used to reveal the structural features of a substrate/coating system, explore the effect of the substrate on the initial microstructure and morphologies of coatings, and check the quality of the coated-parts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the wear resistance of the gamma-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 degrees C) wear behaviors of laser clad gamma/Cr7C3/TiC composite coatings with different constitution of NiCr-Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary gamma/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough gamma/Cr7C3 eutectics matrix and their stability under high-temperature exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature field in the laser hardening process was numerically simulated by MSC.Marc software. The influence of energy density on laser hardening effect is analyzed. Simulation result is verified through the thermocouple temperature transducer measuring the specimen surface temperature under the laser irradiation. Experimental curves of temperature versus time are in agreement with simulation results. The simulation results can be regarded as a basis for choosing laser technological parameters.