982 resultados para Land and Sea
Resumo:
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
Resumo:
The LMD AGCM was iteratively coupled to the global BIOME1 model in order to explore the role of vegetation-climate interactions in response to mid-Holocene (6000 y BP) orbital forcing. The sea-surface temperature and sea-ice distribution used were present-day and CO2 concentration was pre-industrial. The land surface was initially prescribed with present-day vegetation. Initial climate “anomalies” (differences between AGCM results for 6000 y BP and control) were used to drive BIOME1; the simulated vegetation was provided to a further AGCM run, and so on. Results after five iterations were compared to the initial results in order to identify vegetation feedbacks. These were centred on regions showing strong initial responses. The orbitally induced high-latitude summer warming, and the intensification and extension of Northern Hemisphere tropical monsoons, were both amplified by vegetation feedbacks. Vegetation feedbacks were smaller than the initial orbital effects for most regions and seasons, but in West Africa the summer precipitation increase more than doubled in response to changes in vegetation. In the last iteration, global tundra area was reduced by 25% and the southern limit of the Sahara desert was shifted 2.5 °N north (to 18 °N) relative to today. These results were compared with 6000 y BP observational data recording forest-tundra boundary changes in northern Eurasia and savana-desert boundary changes in northern Africa. Although the inclusion of vegetation feedbacks improved the qualitative agreement between the model results and the data, the simulated changes were still insufficient, perhaps due to the lack of ocean-surface feedbacks.
Resumo:
The sea ice export from the Arctic is of global importance due to its fresh water which influences the oceanic stratification and, thus, the global thermohaline circulation. This study deals with the effect of cyclones on sea ice and sea ice transport in particular on the basis of observations from two field experiments FRAMZY 1999 and FRAMZY 2002 in April 1999 and March 2002 as well as on the basis of simulations with a numerical sea ice model. The simulations realised by a dynamic-thermodynamic sea ice model are forced with 6-hourly atmospheric ECMWF- analyses (European Centre for Medium-Range Weather Forecasts) and 6-hourly oceanic data of a MPI-OM-simulation (Max-Planck-Institute Ocean Model). Comparing the observed and simulated variability of the sea ice drift and of the position of the ice edge shows that the chosen configuration of the model is appropriate for the performed studies. The seven observed cyclones change the position of the ice edge up to 100 km and cause an extensive decrease of sea ice coverage by 2 % up to more than 10 %. The decrease is only simulated by the model if the ocean current is strongly divergent in the centre of the cyclone. The impact is remarkable of the ocean current on divergence and shear deformation of the ice drift. As shown by sensitivity studies the ocean current at a depth of 6 m – the sea ice model is forced with – is mainly responsible for the ascertained differences between simulation and observation. The simulated sea ice transport shows a strong variability on a time scale from hours to days. Local minima occur in the time series of the ice transport during periods with Fram Strait cyclones. These minima are not caused by the local effect of the cyclone’s wind field, but mainly by the large-scale pattern of surface pressure. A displacement of the areas of strongest cyclone activity in the Nordic Seas would considerably influence the ice transport.
Resumo:
The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.
Resumo:
[EN] On 8-10 April 2007, several episodes of intense sea-breeze fronts were registered at the island of Fuerteventura (Canary Islands). The sea-breeze circulation was primary driven by daytime heating contrasts between land and the Atlantic Ocean during a period of weak trade winds. Numerical simulations of these events were carried out using the 3.1.1 version of the Weather Research and Forecasting (WRF) Model. Two different domains with 6.6-km and 2.2-km horizontal grid spacing and two sets with 27 and 51 vertical sigma levels were defined. The simulation was performed using two-way interactive nesting between the first and the second domain, using different land surface model parameterizations (Thermal diffusion, Noah LSM and RUC) for comparison. Initial conditions were provided by the NCAR Dataset analysis from April 2007, which were improved using surface and upper-air observations. The poster is focused on the 9 April episode.
Resumo:
The irrigation scheme Eduardo Mondlane, situated in Chókwè District - in the Southern part of the Gaza province and within the Limpopo River Basin - is the largest in the country, covering approximately 30,000 hectares of land. Built by the Portuguese colonial administration in the 1950s to exploit the agricultural potential of the area through cash-cropping, after Independence it became one of Frelimo’s flagship projects aiming at the “socialization of the countryside” and at agricultural economic development through the creation of a state farm and of several cooperatives. The failure of Frelimo’s economic reforms, several infrastructural constraints and local farmers resistance to collective forms of production led to scheme to a state of severe degradation aggravated by the floods of the year 2000. A project of technical rehabilitation initiated after the floods is currently accompanied by a strong “efficiency” discourse from the managing institution that strongly opposes the use of irrigated land for subsistence agriculture, historically a major livelihood strategy for smallfarmers, particularly for women. In fact, the area has been characterized, since the end of the XIX century, by a stable pattern of male migration towards South African mines, that has resulted in an a steady increase of women-headed households (both de jure and de facto). The relationship between land reform, agricultural development, poverty alleviation and gender equality in Southern Africa is long debated in academic literature. Within this debate, the role of agricultural activities in irrigation schemes is particularly interesting considering that, in a drought-prone area, having access to water for irrigation means increased possibilities of improving food and livelihood security, and income levels. In the case of Chókwè, local governments institutions are endorsing the development of commercial agriculture through initiatives such as partnerships with international cooperation agencies or joint-ventures with private investors. While these business models can sometimes lead to positive outcomes in terms of poverty alleviation, it is important to recognize that decentralization and neoliberal reforms occur in the context of financial and political crisis of the State that lacks the resources to efficiently manage infrastructures such as irrigation systems. This kind of institutional and economic reforms risk accelerating processes of social and economic marginalisation, including landlessness, in particular for poor rural women that mainly use irrigated land for subsistence production. The study combines an analysis of the historical and geographical context with the study of relevant literature and original fieldwork. Fieldwork was conducted between February and June 2007 (where I mainly collected secondary data, maps and statistics and conducted preliminary visit to Chókwè) and from October 2007 to March 2008. Fieldwork methodology was qualitative and used semi-structured interviews with central and local Government officials, technical experts of the irrigation scheme, civil society organisations, international NGOs, rural extensionists, and water users from the irrigation scheme, in particular those women smallfarmers members of local farmers’ associations. Thanks to the collaboration with the Union of Farmers’ Associations of Chókwè, she has been able to participate to members’ meeting, to education and training activities addressed to women farmers members of the Union and to organize a group discussion. In Chókwè irrigation scheme, women account for the 32% of water users of the familiar sector (comprising plot-holders with less than 5 hectares of land) and for just 5% of the private sector. If one considers farmers’ associations of the familiar sector (a legacy of Frelimo’s cooperatives), women are 84% of total members. However, the security given to them by the land title that they have acquired through occupation is severely endangered by the use that they make of land, that is considered as “non efficient” by the irrigation scheme authority. Due to a reduced access to marketing possibilities and to inputs, training, information and credit women, in actual fact, risk to see their right to access land and water revoked because they are not able to sustain the increasing cost of the water fee. The myth of the “efficient producer” does not take into consideration the characteristics of inequality and gender discrimination of the neo-liberal market. Expecting small-farmers, and in particular women, to be able to compete in the globalized agricultural market seems unrealistic, and can perpetuate unequal gendered access to resources such as land and water.
Resumo:
This study presents geo-scientific evidence for Holocene tsunami impact along the shores of the Eastern Ionian Sea. Cefalonia Island, the Gulf of Kyparissia and the Gialova Lagoon were subject of detailed geo-scientific investigations. It is well known that the coasts of the eastern Mediterranean were hit by the destructive influence of tsunamis in the past. The seismically highly active Hellenic Trench is considered as the most significant tsunami source in the Eastern Ionian Sea. This study focuses on the reconstruction and detection of sedimentary signatures of palaeotsunami events and their influence on the Holocene palaeogeographical evolution. The results of fine grained near coast geo-archives are discussed and interpreted in detail to differentiate between tsunami, storm and sea level highstands as sedimentation processes.rnA multi-method approach was applied using geomorphological, sedimentological, geochemical, geophysical and microfaunal analyses to detect Holocene tsunamigenic impact. Chronological data were based on radiocarbondatings and archaeological age estimations to reconstruct local geo-chronostratigraphies and to correlate them on supra-regional scales.rnDistinct sedimentary signatures of 5 generations of tsunami impact were found along the coasts of Cefalonia in the Livadi coastal plain. The results show that the overall coastal evolution was influenced by tsunamigenic impact that occured around 5700 cal BC (I), 4250 cal BC (II), at the beginning of the 2nd millennium cal BC (III), in the 1st millennium cal BC (IV) and posterior to 780 cal AD (V). Sea level reconstructions and the palaeogeographical evolution show that the local Holocene sea level has never been higher than at present.rnAt the former Mouria Lagoon along the Gulf of Kyparissia almost four allochtonous layers of tsunamigenic origin were identified. The stratigraphical record and palaeogeographical reconstructions show that major environmental coastal changes were linked to these extreme events. At the southern end of the Agoulenitsa Lagoon at modern Kato Samikon high-energy traces were found more than 2 km inland and upt ot 9 m above present sea level. The geo-chronological framework deciphered tsunami landfall for the 5th millennium cal BC (I), mid to late 2nd mill. BC (II), Roman times (1st cent. BC to early 4th cent. AD) (III) and most possible one of the historically well-known 365 AD or 521/551 AD tsunamis (IV).rnCoarse-grained allochthonous sediments of marine origin were found intersecting muddy deposits of the quisecent sediments of the Gialova Lagoon on the southwestern Peloponnese. Radiocarbondatings suggest 6 generations of major tsunami impact. Tsunami generations were dated to around 3300 cal BC (I), around the end of 4th and the beginning of 3rd millennium BC (II), after around 1100 cal BC (III), after the 4th to 2nd cent. BC (IV), between the 8th and early 15th cent. AD (V) and between the mid 14th to beginning of 15th cent. AD (VI). Palaeogeographical and morphological characteristics in the environs of the Gialova Lagoon were controlled by high-energy influence.rnSedimentary findings in all study areas are in good accordance to traces of tsunami events found all over the Ionian Sea. The correlation of geo-chronological data fits very well to coastal Akarnania, the western Peloponnese and finding along the coasts of southern Italy and the Aegean. Supra-regional influence of tsunamigenic impact significant for the investigated sites. The palaeogeographical evolution and palaeo-geomorphological setting of the each study area was strongly affected by tsunamigenic impact.rnThe selected geo-archives represent extraordinary sediment traps for the reconstruction of Holocene coastal evolution. Our result therefore give new insight to the exceptional high tsunami risk in the eastern Mediterranean and emphasize the underestimation of the overall tsunami hazard.
Resumo:
Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.
Resumo:
Tajikistan, with 93% of its surface area taken up by mountains and 65% of its labor force employed in agriculture, is judged to be highly vulnerable to risks, including climate change risks and food insecurity risks. The article examines a set of land use policies and practices that can be used to mitigate the vulnerability of Tajikistan’s large rural population, primarily by increasing family incomes. Empirical evidence from Tajikistan and other CIS countries suggests that families with more land and higher commercialization earn higher incomes and achieve higher well-being. The recommended policy measures that are likely to increase rural family incomes accordingly advocate expansion of smallholder farms, improvement of livestock productivity, increase of farm commercialization through improvement of farm services, and greater diversification of both income sources and the product mix. The analysis relies for supporting evidence on official statistics and recent farm surveys. Examples from local initiatives promoting sustainable land management practices and demonstrating the implementation of the proposed policy measures are presented.
Resumo:
Air samples were collected from Jan 16 to Mar 14, 2008 onboard the Oceanic II- The Scholar Ship which navigated an east–west transect from Shanghai to Cape Verde, and polybrominated diphenyl ethers (PBDEs) were analyzed in these samples. PBDE concentrations in the atmosphere over the open seas were influenced by proximity to source areas and land, and air mass origins. The concentrations of Σ21PBDEs over the East and South China Seas, the Bay of Bengal and the Andaman Sea, the Indian Ocean, and the Atlantic Ocean were 10.8 ± 6.13, 3.22 ± 1.57, 5.12 ± 3.56, and 2.87 ± 1.81 pg m−3, respectively. BDE-47 and -99 were the dominant congeners in all the samples, suggesting that the widely used commercial penta-BDE products were the original sources. Over some parts of Atlantic and Indian Ocean, daytime concentrations of BDE-47 and BDE-99 were higher than the concentrations at night. The strong atmospheric variability does not always coincide with a diurnal cycle, but the variability in air concentrations in such remote areas of the ocean remains strong. No significant trends were found for each of PBDE congener with latitude.
Resumo:
Small-scale farmers in the Chipata District of Zambia rely on their farm fields to grow maize and groundnuts for food security. Cotton production and surplus food security crops are used to generate income to provide for their families. With increasing population pressure, available land has decreased and farmers struggle to provide the necessary food requirements and income to meet their family’s needs. The purpose of the study was to determine how a farmer can best allocate his land to produce maize, groundnuts and cotton when constrained by labor and capital resources to generate the highest potential for food security and financial gains. Data from the 2008-2009 growing season was compiled and analyzed using a linear programming model. The study determined that farmers make the most profit by allocating all additional land and resources to cotton after meeting their minimum food security requirements. The study suggests growing cotton is a beneficial practice for small-scale subsistence farmers to generate income when restricted by limited resources.
Resumo:
Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.