914 resultados para Lactic-acid
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.
Resumo:
Five anthranilic acid derivatives, a mixture I of three new compounds 11′-hexadecenoylanthranilic acid (1), 9′-hexadecenoylanthranilic acid (2), and 7′-hexadecenoylanthranilic acid (3), as well as a new compound 9,12,15-octadecatrienoylanthranilic acid (4) together with a new natural product, hexadecanoylanthranilic acid (5), were isolated from Geijera parviflora Lindl. (Rutaceae). Their structures were elucidated by extensive spectroscopic measurements, and the positions of the double bonds in compounds 1-3 of the mixture I were determined by tandem mass spectrometry employing ozone-induced dissociation. The mixture I and compound 5 showed good antibacterial activity against several Gram-positive strains. © 2013 Elsevier B.V.
Resumo:
Pyrido[1,2-a]benzimidazoles1, 2a are interesting compounds both from the viewpoint of medicinal chemistry2–7 (solubility,7 DNA intercalation3) and materials chemistry8 (fluorescence). Of note among the former is the antibiotic drug Rifaximin,5 which contains this heteroaromatic core. The classical synthetic approach for the assembly of pyrido[1,2-a]benzimidazoles is by [3+3] cyclocondensation of benzimidazoles containing a methylene group at C2 with appropriate bielectrophiles.2a However, these procedures are often low-yielding, involve indirect/lengthy sequences, and/or provide access to a limited range of products, primarily providing derivatives with substituents located on the pyridine ring (A ring, Scheme 1).2–4 Theoretically, a good alternative synthetic method for the synthesis of pyrido[1,2-a]benzimidazoles with substituents in the benzene ring (C ring) should be accessible by intramolecular transition-metal-catalyzed CN bond formation in N-(2-chloroaryl)pyridin-2-amines, based on chemistry recently developed in our research group.9 These substrates themselves are easily available through SNAr or selective Pd-catalyzed amination10 of 2-chloropyridine with 2-chloroanilines.11 If a synthetic procedure that eliminated the need for preactivation of the 2-position of the 2-chloroarylamino entity could be developed, this would be even more powerful, as anilines are more readily commercially available than 2-chloroanilines. Therefore the synthesis of pyrido[1,2-a]benzimidazoles (4) by a transition-metal-catalyzed intramolecular CH amination approach from N-arylpyridin-2-amines (3) was explored (Scheme 1).
Resumo:
PURPOSE. Phospholipids are a major component of lens fiber cells and influence the activity of membrane proteins. Previous investigations of fatty acid uptake by the lens are limited. The purpose of the present study was thus to determine whether exogenous fatty acids could be taken up by the rat lens and incorporated into molecular phospholipids. METHODS. Lenses were incubated with fluorescently labeled palmitic acid and then analyzed by confocal microscopy. Concurrently, lenses incubated with either fluorescently labeled palmitic acid or the more physiologically relevant (13)C(18)-oleic acid were sectioned into nuclear and cortical regions and analyzed by highly sensitive and structurally selective electrospray ionization tandem mass spectrometry techniques. RESULTS. The detection of fluorescently labeled palmitic acid, even after 16 hours of incubation, was limited to approximately the outer 25% to 30% of the rat lens. Mass spectrometry also revealed the presence of free (13)C(18)-oleic acid in the cortex but not the nucleus. No evidence could be found for incorporation of fluorescently labeled palmitic acid into phospholipids; however, a low level of (13)C(18)-oleic acid incorporation into phosphatidylethanolamine (PE), specifically PE (PE 16:0/(13)C(18) 18:1) was detected in the lens cortex after 16 hours. CONCLUSIONS. These data demonstrate that uptake of exogenous (e.g., dietary fatty acids) by the lens and their incorporation into phospholipids is minimal, most likely occurring only during de novo synthesis in the outermost region of the lens. This finding adds support to the hypothesis that once synthesized there is no active remodeling or turnover of fiber cell phospholipids.
Resumo:
Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex (p=0.001) and date of collection (p=0.016).
Resumo:
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5–15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns.
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
Cytochrome P450BM3, from Bacillus megaterium, catalyses the epoxidation of linolenic acid 1 yielding 15,16-epoxyoctadeca-9,12-dienoic acid 2 with complete regio- and moderate enantio-selectivity (60% ee). The absolute configuration of the product is tentatively assigned as 15(R),16(S)-. The Michaelis–Menten parameters kcat and Km for the reaction were determined to be 3126 ± 226 min−1 and 24 ± 6 μM respectively.
Resumo:
The structures of the compounds from the reaction of the drug dapsone [4-(4-aminophenylsulfonyl)aniline] with 3,5-dinitrosalicylic acid, the salt hydrate [4-(4-aminohenylsulfonyl)anilinium 2-carboxy-4,6-dinitrophenolate monohydrate] (1) and the 1:1 adduct with 5-nitroisophthalic acid [4-(4-aminophenylsulfonyl)aniline 5-nitrobenzene-1,3-dicarboxylic acid] (2) have been determined. Crystals of 1 are triclinic, space group P-1, with unit cell dimensions a = 8.2043(3), b = 11.4000(6), c = 11.8261(6)Å, α = 110.891(5), β = 91.927(3), γ = 98.590(4)deg. and Z = 4. Compound 2 is orthorhombic, space group Pbcn, with unit cell dimensions a = 20.2662(6), b = 12.7161(4), c = 15.9423(5)Å and Z = 8. In 1, intermolecular analinium N-H…O and water O-H…O and O-H…N hydrogen-bonding interactions with sulfone, carboxyl, phenolate and nitro O-atom and aniline N-atom acceptors give a two-dimensional layered structure. With 2, the intermolecular interactions involve both aniline N-H…O and carboxylic acid O-H…O and O-H…N hydrogen bonds to sulfone, carboxyl, nitro and aniline acceptors, giving a three-dimensional network structure. In both structures π--π aromatic ring associations are present.
Resumo:
Objective There are no objective ambulatory studies on the temporal relationship between reflux and cough in children. Commercial pHmetry loggers have slow capture rates (0.25 Hz) that limit objective quantification of reflux and cough. The authors aimed to evaluate if there is a temporal association between cough and acid pH in ambulatory children with chronic cough. setting and patients The authors studied children (aged <14 years) with chronic cough, suspected of acid reflux and considered for pHmetry using a specifically built ambulatory pHmetry–cough logger that enabled the simultaneous ambulatory recording of cough and pH with a fast (10 Hz) capture rate. Main outcome measures Coughs within (before and after) 10, 30, 60 and 120 s of a reflux episode (pH<4 for >0.5 s). Results Analysis of 5628 coughs in 20 children. Most coughs (83.9%) were independent of a reflux event. Cough–reflux (median 19, IQR 3–45) and reflux–cough (24.5, 13–51) sequences were equally likely to occur within 120 s. Within the 10 and 30 s time frame, reflux–cough (10 s=median 2.5, IQR 0–7.25; 30 s=6.5, 1.25–22.25) sequences were significantly less frequent than reflux–no cough (10 s=27, IQR 15–65; 30 s=24.5, 14.5–55.5) sequences, (p=0.0001 and p=0.001, respectively). No differences were found for 60 and 120 s time frame. Cough–reflux sequence (median 1.0, IQR 0–8) within 10 s was significantly less (p=0.0001) than no cough–reflux sequences (median 29.5, 15–67), within 30 s (p=0.006) and 60 s (p=0.048) but not within 120 s (p=0.47). Conclusions In children with chronic cough and suspected of having gastro-oesophageal reflux disease, the temporal relationship between acid reflux and cough is unlikely causal.
Resumo:
The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4-·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42-·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-HOcarboxyl hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-HO hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-HOcarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-HOwater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N-HOwater, water O-HOamide and piperidinium N-HOcarboxyl hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.