841 resultados para LUMBAR
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Resumo:
Many studies have identified changes in trunk muscle recruitment in clinical low back pain (LBP). However, due to the heterogeneity of the LBP population these changes have been variable and it has been impossible to identify a cause-effect relationship. Several studies have identified a consistent change in the feed-forward postural response of transversus abdominis (TrA), the deepest abdominal muscle, in association with arm movements in chronic LBP. This study aimed to determine whether the feedforward recruitment of the trunk muscles in a postural task could be altered by acute experimentally induced LBP. Electromyographic (EMG) recordings of the abdominal and paraspinal muscles were made during arm movements in a control trial, following the injection of isotonic (non-painful) and hypertonic (painful) saline into the longissimus muscle at L4, and during a 1-h follow-up. Movements included rapid arm flexion in response to a light and repetitive arm flexion-extension. Temporal and spatial EMG parameters were measured. The onset and amplitude of EMG of most muscles was changed in a variable manner during the period of experimentally induced pain. However, across movement trials and subjects the activation of TrA was consistently reduced in amplitude or delayed. Analyses in the time and frequency domain were used to confirm these findings. The results suggest that acute experimentally induced pain may affect feedforward postural activity of the trunk muscles. Although the response was variable, pain produced differential changes in the motor control of the trunk muscles, with consistent impairment of TrA activity.
Resumo:
Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Observation of the occurrence of protective muscle activity is advocated in assessment of the peripheral nervous system by means of neural provocation tests. However, no studies have yet demonstrated abnormal force generation in a patient population. Objectives: To analyze whether aberrations in shoulder girdle-elevation force during neural tissue provocation testing for the median nerve (NTPTI) can be demonstrated, and whether possible aberrations can be normalized following cervical mobilization. Study Design: A single-blind randomized comparative controlled study. Setting: Laboratory setting annex in a manual therapy teaching practice. Participants: Twenty patients with unilateral or bilateral neurogenic cervicobrachial pain. Methods: During the NTPTI, we used a load cell and electrogoniometer to record continuously the shoulder-girdle elevation force in relation to the available range of elbow extension. Following randomization, we analyzed the immediate treatment effects of a cervical contralateral lateral glide mobilization technique (experimental group) and therapeutic ultrasound (control group). Results: On the involved side, the shoulder-girdle elevation force occur-red earlier, and the amount of force at the end of the test was substantially, though not significantly, greater than that on the uninvolved side at the corresponding range of motion. Together with a significant reduction in pain perception after cervical mobilization, a clear tendency toward normalization of the force curve could be observed, namely, a significant decrease in force generation and a delayed onset. The control group demonstrated no differences. Conclusions: Aberrations in force generation during neural, provocation testing are present in patients with neurogenic pain and can be normalized with appropriate treatment modalities.
Resumo:
Exercise is commonly used in the management of chronic musculoskeletal conditions, including chronic low back pain (CLBP). The focus of exercise is varied and may include parameters ranging from strength and endurance training, to specific training of muscle coordination and control. The assumption underpinning these approaches is that improved neuromuscular function will restore or augment the control and support of the spine and pelvis. In a biomechanical model of CLBP, which assumes that pain recurrence is caused by repeated mechanical irritation of pain sensitive structures [1], it is proposed that this improved control and stability would reduce mechanical irritation and lead to pain relief [1]. Although this model provides explanation for the chronicity of LBP, perpetuation of pain is more complex, and contemporary neuroscience holds the view that chronic pain is mediated by a range of changes including both peripheral (eg, peripheral sensitization) and central neuroplastic changes [2]. Although this does not exclude the role of improved control of the lumbar spine and pelvis in management of CLBP, particularly when there is peripheral sensitization, it highlights the need to look beyond outdated simplistic models. One factor that this information highlights is that the refinement of control and coordination may be more important than simple strength and endurance training for the trunk muscles. The objective of this article is to discuss the rationale for core stability exercise in the management of CLBP, to consider critical factors for its implementation, and to review evidence for efficacy of the approach.
Resumo:
A new mesosuchian crocoddian from the Nova Olinda Member of the Crato Formation (Lower Cretaceous, Aptian) of north-eastern Brazil is described. Susisuchus anatoceps gen. et sp. nov. is the first crocodillan to be reported from this formation. It is represented by an incomplete, partially articulated skeleton: the skull and mandible, partial postcranial axial skeleton, forelimbs and portions of the osteodermal skeleton. Preservation of soft tissues includes the skin surrounding both forelimbs and the digits of the right hand. The state of preservation of the specimen suggests that it was incorporated into the basin as a desiccated carcass. Susisuchus anatoceps is one of the oldest crocodilians with a eusuchian-type dorsal shield, comprising a tetraserial paravertebral shield and, either side of this, two sagittal rows of accessory osteoderms. It also possesses amphicoelous thoracic, lumbar and caudal vertebrae. This combination of postcranial features have never before been seen in a crocodilian and warrant the erection of a new family within Mesosuchia: Susisuchidae. Taxonomically, S. anatoceps is similar to a number of Lower Cretaceous mesosuchians previously considered to have given rise to eusuchians, most notably the Glen Rose crocodilian and a new, but as yet undescribed crocodillan from the Lower Cretaceous Winton Formation of western Queensland, Australia. Preliminary preparation of the Winton crocodilian indicates that it may belong to Susisuchidae, supporting the hypotheses of interchange between the vertebrate faunas of South America and Australia during the Lower Cretaceous.
Resumo:
Introduction/Purpose: The role of impact loading activity on bone mass is well established; however, there are little data on the effects of exercise on bone geometry and indices of bone strength. The primary purpose of this study was to compare indices of bone strength at the proximal femur (PF) between elite premenarcheal gymnasts (N = 30) and age-matched controls (N = 30). Methods: Structural properties of the proximal femur were derived from the hip analyses program and included measurement of subperiosteal width, endosteal diameter, cross-sectional area, bone mineral density, cross-section moment of inertia (CSMI), and section modulus (Z). These parameters were measured for two regions of the PF: the narrow neck (NN), and the shaft (S). In addition, a strength index (S-SI) was calculated at the shaft by dividing the Z at the shaft by the femur length. A secondary purpose was to compare bone mineral content (BMC) values at the total body, lumbar spine, and three sites at the PF (neck, trochanter, and total) between the groups. All dependent values were compared adjusting for height and weight using an ANCOVA procedure and for relative lean body mass post hoc. Results: The gymnasts had significantly greater size-adjusted strength indices (CSMI, Z, and SI) at the NN and S. Gymnasts also had significantly greater size-adjusted BMC at all sites investigated. However, these differences disappeared when adjusted for relative lean body mass. Conclusion: When adjusted for body size, gymnasts had significantly greater indices of both axial strength and bending strength at the NN region of the PF and S, as well as a greater bone SI at the femoral shaft. These differences may be related to greater relative lean body mass attained in gymnastics training.
Resumo:
Aim. Numerous studies report an association between muscle strength and bone mineral density (BMD) in young and older women. However, the participants are generally non-athletes, thus it is unclear if the relationship varies by exercise status. Therefore, the purpose was to examine the relationships between BMD and muscle strength in young women with markedly different exercise levels. Methods. Experimental design: cross-sectional. Setting: a University research laboratory. Participants: 18 collegiate gymnasts and 22 age- and weight-matched recreationally active control women. Measures: lumbar spine, femoral neck, arm, leg and whole body BMD (g/cm(2)) were assessed by dual X-ray absorptiometry. In addition, lumbar spine and femoral neck bone mineral apparent density (BMAD, g/cm(3)) was calculated. Handgrip strength and knee extensor and flexor torque (60degrees/s) were determined by dynamometry, and bench press and leg press strength (1-RM) using isotonic equipment. Results. BMD at all sites and bench press, leg press and knee flexor strength were greater in gymnasts than controls (p
Resumo:
Study Design. Cross-sectional study. Objective. The present study compared activity of deep and superficial cervical flexor muscles and craniocervical flexion range of motion during a test of craniocervical flexion between 10 patients with chronic neck pain and 10 controls. Summary of Background Data. Individuals with chronic neck pain exhibit reduced performance on a test of craniocervical flexion, and training of this maneuver is effective in management of neck complaints. Although this test is hypothesized to reflect dysfunction of the deep cervical flexor muscles, this has not been tested. Methods. Deep cervical flexor electromyographic activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the superficial neck muscles ( sternocleidomastoid and anterior scalene). Root mean square electromyographic amplitude and craniocervical flexion range of motion was measured during five incremental levels of craniocervical flexion in supine. Results. There was a strong linear relation between the electromyographic amplitude of the deep cervical flexor muscles and the incremental stages of the craniocervical flexion test for control and individuals with neck pain ( P = 0.002). However, the amplitude of deep cervical flexor electromyographic activity was less for the group with neck pain than controls, and this difference was significant for the higher increments of the task ( P < 0.05). Although not significant, there was a strong trend for greater sternocleidomastoid and anterior scalene electromyographic activity for the group with neck pain. Conclusions. These data confirm that reduced performance of the craniocervical flexion test is associated with dysfunction of the deep cervical flexor muscles and support the validity of this test for patients with neck pain.
Resumo:
Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.
Resumo:
Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.
Resumo:
Neurons in pelvic ganglia receive nicotinic excitatory post-synaptic potentials (EPSPs) from sacral preganglionic neurons via the pelvic nerve, lumbar preganglionic neurons via the hypogastric nerve or both. We tested the effect of a range of calcium channel antagonists on EPSPs evoked in paracervical ganglia of female guinea-pigs after pelvic or hypogastric nerve stimulation. omega-Conotoxin GVIA (CTX GVIA, 100 nM) or the novel N-type calcium channel antagonist, CTX CVID (100 nM) reduced the amplitude of EPSPs evoked after pelvic nerve stimulation by 50-75% but had no effect on EPSPs evoked by hypogastric nerve stimulation. Combined addition of CTX GVIA and CTX CVID was no more effective than either antagonist alone. EPSPs evoked by stimulating either nerve trunk were not inhibited by the P/Q calcium channel antagonist, omega-agatoxin IVA (100 nM), nor the L-type calcium channel antagonist, nifedipine (30 muM). SNX 482 (300 nM), an antagonist at some R-type calcium channels, inhibited EPSPs after hypogastric nerve stimulation by 20% but had little effect on EPSPs after pelvic nerve stimulation. Amiloride (100 muM) inhibited EPSPs after stimulation of either trunk by 40%, while nickel (100 muM) was ineffective. CTX GVIA or CTX CVID (100 nM) also slowed the rate of action potential repolarization and reduced afterhyperpolarization amplitude in paracervical neurons. Thus, release of transmitter from the terminals of sacral preganglionic neurons is largely dependent on calcium influx through N-type calcium channels, although an unknown calcium channel which is resistant to selective antagonists also contributes to release. Release of transmitter from lumbar preganglionic neurons does not require calcium entry through either conventional N-type calcium channels or the variant CTX CVID-sensitive N-type calcium channel and seems to be mediated largely by a novel calcium channel. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.