914 resultados para LIPID METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of butylated hydroxytoluene/butylated hydroxyanisole blend (BHT/BHA), and rosemary and oregano extracts, added individually or in combination, on lipid oxidation and fatty acid composition was investigated on irradiated frozen beef burgers. Irradiation treatment was carried out using a (60)CO semi-industrial irradiator at doses of 6, 7 and 8 kGy, and then the treated meat samples were stored at -20 degrees C for 90 days. Lipid oxidation and fatty acid composition of beef samples were evaluated by measurement of TBARS and gas chromatography, respectively. The results of the experiment showed that rosemary extract, applied alone and in combination with either BHT/BHA or oregano extracts was more effective in maintaining a low oxidation level in the samples compared to oregano extract used individually or in combination with BHT/BHA. Results also showed no significant differences (p > 0.05) in fatty acid composition in all analyzed samples, although some changes in terms of decreased PUFA and MUFA, beside of slight increase of SFA content were observed. However, these differences do not correlate positively neither with the irradiation dose nor the type of antioxidant. Thus, there is a potential application of these spices as natural antioxidants in irradiated meats. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to assess the efficacy of rosemary and oregano extracts in avoiding oxidative changes in beef burgers, and to evaluate the fatty acid profile of these products after electron beam exposition. Extracts, individually or in combination, were added to beef burgers and compared to synthetic antioxidants commonly used in food (butylated hydroxytoluene, butylated hydroxyanisole). The ground beef were submitted to electron beam irradiation at doses of 0, 3.5 and 7 kGy, and stored for 90 days. At regular time intervals, lipid oxidation and fatty acid composition were evaluated through measurement of thiobarbituric acid-reactive substances (TBARS) and gas chromatography, respectively. The results indicate that, although the irradiation process triggers an increase in the lipid oxidation ratio expressed by TBARS values, great changes in the fatty acid profiles were not observed; instead, they continued to present characteristics very similar to that of non-irradiated beef. Thus, as irradiation doses of up to 7 kGy for frozen meat can make foods safe from foodborne pathogens, natural antioxidants derived from spices are able to reduce and avoid lipid changes that may cause a deterioration of the sensory quality of these foods, and these natural extracts offer a good choice for replacing synthetic additives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Our purpose was to examine the effects of daily servings of butter, no-trans-fat margarine and plant sterol margarine, within recommended amounts, on plasma lipids, apolipoproteins (Apos), biomarkers of inflammation and endothelial dysfunction, and on the transfer of lipids to HDL particles in free-living subjects with the metabolic syndrome. Methods: This was a randomized, single-blind study where 53 metabolic syndrome subjects (62% women, mean age 54 years) received isocaloric servings of butter, no-trans-fat margarine or plant sterol margarine in addition to their usual diets for 5 weeks. The main outcome measures were plasma lipids, Apo, inflammatory and endothelial dysfunction markers (CRP, IL-6, CD40L or E-selectin), small dense LDL cholesterol concentrations and in vitro radioactive lipid transfer from cholesterol-rich emulsions to HDL. Difference among groups was evaluated by analysis of variance. Results: There was a significant reduction in Apo-B (-10.4 %, P = 0.043) and in the Apo-B/Apo-A-1 ratio (-11.1%, P = 0.034) with plant sterol margarine. No changes in plasma lipids were noticed with butter and no-trans-fat margarine. Transfer rates of lipids to HDL were reduced in the no-trans-fat margarine group: triglycerides -42.0%, (P<0.001 vs butter and sterol margarine) and free cholesterol -16.2% (P = 0.006 vs sterol margarine). No significant effects were noted on the concentrations of inflammatory and endothelial dysfunction markers among the groups. Conclusions: In free-living subjects with the metabolic syndrome consumption of plant sterol and no-trans-fat margarines within recommended amounts reduced, respectively, Apo-B concentrations and the ability of HDL to accept lipids. European Journal of Clinical Nutrition (2010) 64, 1141-1149; doi:10.1038/ejcn.2010.122; published online 21 July 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is increasing interest in natural treatments to control dyslipidemia and reduce the risk of cardiovascular disease. Previous studies have demonstrated the beneficial effects of soy yogurt fermented with Enterococcus faecium CRL 183 and of dietary isoflavones on the lipid profile. The purpose of the present study was to investigate the effects of isoflavone-supplemented soy yogurt, fermented with E. faecium CRL183, on lipid parameters and atherosclerosis development in rabbits with induced hypercholesterolemia. Methods: Forty-eight rabbits were randomly assigned to eight groups fed on the following diets for 60 days: C - control; IY - isoflavone-supplemented soy yogurt; H - hypercholesterolemic (1.0% cholesterol wt/wt diet); HY - hypercholesterolemic plus soy yogurt; HIY - hypercholesterolemic plus isoflavone-supplemented soy yogurt; HP - hypercholesterolemic plus placebo; HI hypercholesterolemic plus isoflavone and HE - hypercholesterolemic plus pure culture of E. faecium CRL 183. Serum lipids and autoantibodies against oxLDL (oxLDL Ab) were analyzed on days 0, 30 and 60 of the treatment and the atherosclerotic lesions were quantified at the end of the experiment. Results: Soy yogurt, soy yogurt supplemented with isoflavones and placebo promoted significant reductions in total cholesterol level (38.1%, 27.0% and 26.6%, respectively). Significant increases in serum HDL-C concentration relative to group H were detected in animals that ingested soy yogurt, with or without the isoflavone supplement (55.2%), E. faecium culture (43.3%) or placebo (35.8%). Intake of soy yogurt and soy yogurt supplemented with isoflavones prevented the rise of oxLDL Ab during the study period. The extent of atherosclerosis in the thoracic and abdominal aortas was reduced in the HIY, HY and HP groups. However, when the whole aorta was analyzed, animals treated with soy yogurt supplemented with isoflavones exhibited the greatest reduction (51.4%, P < 0.05) in atherosclerotic lesion area, compared to group H. Conclusion: Soy yogurt could be consumed as an alternative means of reducing the risk of cardiovascular disease by improving the lipid profile and inhibiting oxLDL Ab formation. Our findings also suggest that isoflavone supplementation may enhance the antiatherosclerotic effect of soy yogurt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l(-1)). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l(-1). The highest values of xylitol productivity (Q (P) a parts per thousand 0.40 g l(-1)) and yield factor (Y (P/S) a parts per thousand 0.60 g g(-1)) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2 2 plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X-m), the cell productivity (P-X), and the yield of biomass on nitrogen (Y-X/N) were selected as the response variables. The optimum values of X-m (1,833 mgL(-1)) and Y-X/N (5.9 gg(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X-m = 1,771 +/- 41 mg L-1; Y-X/N = 5.7 +/- 0.17 gg(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exchange of lipids with cells and other lipoproteins is a crucial process in HDL metabolism and for HDL antiatherogenic function. Here, we tested a practical method to quantify the simultaneous transfer to HDL of phospholipids, free-cholesterol, esterified cholesterol and triacylglycerols and to verify the lipid transfer in patients with coronary artery disease (CAD) or undergoing statin treatment. Twenty-eight control subjects without CAD, 27 with CAD and 25 CAD patients under simvastatin treatment were studied. Plasma samples were incubated with a donor nanoemulsion prepared by ultrasonication of the constituent lipids and labeled with radioactive lipids; % lipids transferred to HDL were quantified in the HDL-containing supernatant after chemical precipitation of non-HDL fractions and the nanoemulsion. The assay was precise and reproducible. Increase of temperature (4-37 A degrees C), of incubation period (5 min to 2 h), of HDL-cholesterol concentration (33-244 mg/dL) and of mass of nanoemulsion lipids (0.075-0.3 mg/mu L) resulted in increased lipid transfer from the nanoemulsion to HDL. In contrast, increasing pH (6.5-8.5) and albumin concentration (3.5-7.0 g/dL) did not affect lipid transfer. There was no difference between CAD and control non-CAD with regard to the lipid transfer, but statin treatment reduced the transfer to HDL of all four lipids. The test herein described is a valid and practical tool for exploring an important aspect of HDL metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report focuses on the effects of cholesterol on the expression and function of the ATP-binding cassette (ABCB1, ABCG2 and ABCC2) and solute-linked carrier (SLCO1B1 and SLCO2B1) drug transporters with a particular focus on the potential impact of cholesterol on lipid-lowering drug disposition. Statins are the most active agents in the treatment of hypercholesterolemia. However, considerable interindividual variation exists in the response to statin therapy. Therefore, it would be huge progress if factors were identified that reliably differentiate between responders and nonresponders. Many studies have suggested that plasma lipid concentrations can affect drug disposition of compounds, such as ciclosporin and amphotericin B. Both compounds are able to affect the expression and function of ABC transporters. Although still speculative, these effects might be owing to the regulation of drug transporters by plasma cholesterol levels. Studies with normo- and hyper-cholesterolemic individuals, before and after atorvastatin treatment, have demonstrated that plasma cholesterol levels are correlated with drug transporter expression, as well as being related to atorvastatin`s cholesterol-lowering effect. The mechanism influencing the correlation between cholesterol levels and the expression and function of drug transporters remains unclear. Some studies provide strong evidence that nuclear receptors, such as the pregnane X receptor and the constitutive androstane receptor, mediate this effect. In the near future, pharmacogenomic studies with individuals in a pathological state should be performed in order to identify whether high plasma cholesterol levels might be a factor contributing to interindividual oral drug bioavailability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tamarind (Tamarindus indica L) is indigenous to Asian countries and widely cultivated in the American continents. The tamarind fruit pulp extract (ExT), traditionally used in spices, food components and juices, is rich in polyphenols that have demonstrated anti-atherosclerotic, antioxidant and immunomodulatory activities. This study evaluated the modulator effect of a crude hydroalcoholic ExT on some peripheral human neutrophil functions. The neutrophil reactive oxygen species generation, triggered by opsonized zymosan (OZ), n-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA), and assessed by luminol- and lucigenin-enhanced chemiluminescence (LumCL and LucCL, respectively), was inhibited by ExT in a concentration-dependent manner. ExT was a more effective inhibitor of the PMA-stimulated neutrophil function [IC(50) (in mu g/10(6)cells) = 115.7 +/- 9.7 (LumCL) and 174.5 +/- 25.9 (LucCL)], than the OZ- [IC(50) = 248.5 +/- 23.1 (LumCL) and 324.1 +/- 34.6 (LucCL)] or fMLP-stimulated cells [IC(50) = 178.5 +/- 12.2 (LumCL)]. The ExT also inhibited neutrophil NADPH oxidase activity (evaluated by O(2) consumption), degranulation and elastase activity (evaluated by spectrophotometric methods) at concentrations higher than 200 mu g/10(6) cells, without being toxic to the cells, under the conditions assessed. Together, these results indicate the potential of ExT as a source of compounds that can modulate the neutrophil-mediated inflammatory diseases. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21 +/- A 4 to 130 +/- A 7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H(+) leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria.