936 resultados para LINDBLAD RESONANCE
Resumo:
This Letter presents the results of a search for a heavy particle decaying into an e(+/-)mu(+/-), e(+/-)tau(+/-), or mu(+/-)tau(+/-) final state in pp collisions at root s = 7 TeV. The data were recorded with the ATLAS detector at the LHC during 2011 and correspond to an integrated luminosity of 4.6 fb(-1). No significant excess above the Standard Model expectation is observed, and exclusions at 95% confidence level are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino. For a sneutrino mass of 500 (2000) GeV, the observed limits on the production cross section times branching ratio are 3.2 (1.4) fb, 42 (17) fb, and 40 (18) fb for the e mu, e tau, and mu tau modes, respectively. These results considerably extend constraints from Tevatron experiments.
Resumo:
REASONS FOR PERFORMING STUDY: The diagnosis of lameness caused by proximal metacarpal and metatarsal pain can be challenging. Magnetic resonance imaging (MRI) offers the possibility for further diagnosis but there have been no studies on the normal MRI appearance of the origin of the suspensory ligament (OSL) in conjunction with ultrasonography and histology. OBJECTIVES: To describe the MRI appearance of the OSL in fore- and hindlimbs of sound horses and compare it to the ultrasonographic and histological appearance. The findings can be used as reference values to recognise pathology in the OSL. METHODS: The OSL in the fore- and hindlimbs of 6 sound horses was examined by ultrasonography prior to death, and MRI and histology post mortem. Qualitative evaluation and morphometry of the OSL were performed and results of all modalities compared. RESULTS: Muscular tissue, artefacts, variable SL size and shape complicated ultrasonographic interpretation. In MRI and histology the forelimb OSL consisted of 2 portions, the lateral being significantly thicker than medial. The hindlimb SL had a single large area of origin. In fore- and hindlimbs, the amount of muscular tissue was significantly larger laterally than medially. Overall SL measurements using MRI were significantly higher than using histology and ultrasonography and histological higher than ultrasonographic measurements. Morphologically, there was a good correlation between MRI and histology. CONCLUSIONS: MRI provides more detailed information than ultrasonography regarding muscle fibre detection and OSL dimension and correlates morphologically well with histology. Therefore, ultrasonographic results should be regarded with caution. POTENTIAL RELEVANCE: MRI may be a diagnostic aid when other modalities fail to identify clearly the cause of proximal metacarpal and metatarsal pain; and may improve selection of adequate therapy and prognosis for injuries in this region.
Resumo:
Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.
Resumo:
AIMS: Postmortem magnetic resonance (MRI) imaging is currently evaluated as alternative to traditional autopsy and myocardial infarction plays a key role therein. The aim of this study is to determine the suitability of postmortem MRI in infarction age staging. METHODS AND RESULTS: In eight human forensic corpses presenting with a total of 11 myocardial infarcted areas, short-axis, transversal, and longitudinal long-axis images (T1, T2, stir, flair) were acquired in situ on a 1.5 T system. During subsequent autopsy, the section technique was adapted to short-axis images. Histological investigations were performed along the entire circumference of the left ventricle to correlate the signal alteration in MR to the histological appearance. Two peracute infarctions were not detected in MRI and autopsy. Four acute infarcted areas presented with decreased signal in necrotic centres and increased signal in marginal myocardial regions (T2-weighted). T1-weighted images showed local hyperintensities when intramyocardial haemorrhage occurred. Four cases showed subacute infarctions with hyperintense regions in T2-weighted images and no signal alteration in T1-weighted images. Four chronic myocardial infarctions showed distinctively decreased signals in all applied sequences. CONCLUSION: Postmortem MRI demonstrates myocardial infarction in situ and allows for an infarction age estimation based on the signal behaviour.
Resumo:
OBJECTIVE: Computed tomography (CT) and magnetic resonance imaging (MRI) are introduced as an alternative to traditional autopsy. The purpose of this study was to investigate their accuracy in mass estimation of liver and spleen. METHODS: In 44 cases, the weights of spleen and liver were estimated based on MRI and CT data using a volume-analysis software and a postmortem tissue-specific density factor. In a blinded approach, the results were compared with the weights noted at autopsy. RESULTS: Excellent correlation between estimated and real weights (r = 0.997 for MRI, r = 0.997 for CT) was found. Putrefaction gas and venous air embolism led to an overestimation. Venous congestion and drowning caused higher estimated weights. CONCLUSION: Postmortem weights of liver and spleen can accurately be assessed by nondestructive imaging. Multislice CT overcomes the limitation of putrefaction and venous air embolism by the possibility to exclude gas. Congestion seems to be even better assessed.
Resumo:
In forensic autopsies, one of the most important and common signs of violence to the neck is hemorrhages of the soft tissues. The Institute of Forensic Medicine in Bern evaluates the usefulness of postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) of forensic cases prior to autopsy. The aim of this study was to prove the sensitivity of postmortem MSCT and MRI in the detection of hemorrhages of the neck muscles. A full body scan prior to and a detailed scan of the explanted larynx after autopsy were performed. MSCT detected multiple fractures of the larynx. Detailed MRI was able to demonstrate the hemorrhage of the left posterior cricoarytenoid muscle. The minor hemorrhage of the right posterior cricoarytenoid muscle could not be detected with certainty. Although more experience is required, we conclude that combined MRI and MSCT examination is a useful tool for documentation and examination of neck muscle hemorrhages in forensic cases.
Resumo:
OBJECTIVE: To determine the accuracy of magnetic resonance imaging criteria for the early diagnosis of multiple sclerosis in patients with suspected disease. DESIGN: Systematic review. DATA SOURCES: 12 electronic databases, citation searches, and reference lists of included studies. Review methods Studies on accuracy of diagnosis that compared magnetic resonance imaging, or diagnostic criteria incorporating such imaging, to a reference standard for the diagnosis of multiple sclerosis. RESULTS: 29 studies (18 cohort studies, 11 other designs) were included. On average, studies of other designs (mainly diagnostic case-control studies) produced higher estimated diagnostic odds ratios than did cohort studies. Among 15 studies of higher methodological quality (cohort design, clinical follow-up as reference standard), those with longer follow-up produced higher estimates of specificity and lower estimates of sensitivity. Only two such studies followed patients for more than 10 years. Even in the presence of many lesions (> 10 or > 8), magnetic resonance imaging could not accurately rule multiple sclerosis in (likelihood ratio of a positive test result 3.0 and 2.0, respectively). Similarly, the absence of lesions was of limited utility in ruling out a diagnosis of multiple sclerosis (likelihood ratio of a negative test result 0.1 and 0.5). CONCLUSIONS: Many evaluations of the accuracy of magnetic resonance imaging for the early detection of multiple sclerosis have produced inflated estimates of test performance owing to methodological weaknesses. Use of magnetic resonance imaging to confirm multiple sclerosis on the basis of a single attack of neurological dysfunction may lead to over-diagnosis and over-treatment.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe disease that has been ignored for a long time. However, with the development of improved therapeutic modalities, cardiologists and thoracic surgeons have shown increasing interest in the diagnostic work-up of this entity. The diagnosis and management of chronic thromboembolic pulmonary hypertension require a multidisciplinary approach involving the specialties of pulmonary medicine, cardiology, radiology, anesthesiology and thoracic surgery. With this approach, pulmonary endarterectomy (PEA) can be performed with an acceptable mortality rate. This review article describes the developments in magnetic resonance (MR) imaging techniques for the diagnosis of chronic thromboembolic pulmonary hypertension. Techniques include contrast-enhanced MR angiography (ce-MRA), MR perfusion imaging, phase-contrast imaging of the great vessels, cine imaging of the heart and combined perfusion-ventilation MR imaging with hyperpolarized noble gases. It is anticipated that MR imaging will play a central role in the initial diagnosis and follow-up of patients with CTEPH.
Resumo:
The genesis of Tourette syndrome is still unknown, but a core role for the pathways of cortico-striatal-thalamic-cortical circuitry (CSTC) is supposed. Volume-rendering magnetic resonance imaging data-sets were analysed in 14 boys with Tourette syndrome and 15 age-matched controls using optimised voxel-based morphometry. Locally increased grey-matter volumes (corrected P < 0.001) were found bilaterally in the ventral putamen. Regional decreases in grey matter were observed in the left hippocampal gyrus. This unbiased analysis confirmed an association between striatal abnormalities and Tourette syndrome, and the hippocampal volume alterations indicate an involvement of temporolimbic pathways of the CSTC in the syndrome.
Resumo:
PURPOSE: To prospectively determine the accuracy of 1.5 Tesla (T) and 3 T magnetic resonance angiography (MRA) versus digital subtraction angiography (DSA) in the depiction of infrageniculate arteries in patients with symptomatic peripheral arterial disease. PATIENTS AND METHODS: A prospective 1.5 T, 3 T MRA, and DSA comparison was used to evaluate 360 vessel segments in 10 patients (15 limbs) with chronic symptomatic peripheral arterial disease. Selective DSA was performed within 30 days before both MRAs. The accuracy of 1.5 T and 3 T MRA was compared with DSA as the standard of reference by consensus agreement of 2 experienced readers. Signal-to-noise ratios (SNR) and signal-difference-to-noise ratios (SDNRs) were quantified. RESULTS: No significant difference in overall image quality, sufficiency for diagnosis, depiction of arterial anatomy, motion artifacts, and venous overlap was found comparing 1.5 T with 3 T MRA (P > 0.05 by Wilcoxon signed rank and as by Cohen k test). Overall sensitivity of 1.5 and 3 T MRA for detection of significant arterial stenosis was 79% and 82%, and specificity was 87% and 87% for both modalities, respectively. Interobserver agreement was excellent k > 0.8, P < 0.05) for 1.5 T as well as for 3 T MRA. SNR and SDNR were significantly increased using the 3 T system (average increase: 36.5%, P < 0.032 by t test, and 38.5%, P < 0.037 respectively). CONCLUSIONS: Despite marked improvement of SDNR, 3 T MRA does not yet provide a significantly higher accuracy in diagnostic imaging of atherosclerotic lesions below the knee joint as compared with 1.5 T MRA.