993 resultados para LIFETIME MEASUREMENTS
Resumo:
Octadecylamine was derivatized with dansyl chloride (5-dimethylaminonaphthalene-1-sulfonyl chloride) In order to simplify and understand the LB films of fluorescent probe labeling proteins. its monolayer and multilayers in the absence and presence of stearic acid were deposited by LB technique. Fluorescence spectra and lifetimes of the fluorescent products were studied to elucidate the microenvironment of molecules in the LB films.
Resumo:
In this communication we analyse current versus voltage data obtained using one carrier injection at metal/polymer/metal structures, The used polymer is a soluble blue-emitting alternating block copolymer, Our experimental results demonstrate that the electron current is limited by a large amount of traps with exponential energy distribution in the copolymer. The electron ;mobility of 5.1 x 10(-10) cm(2)/V s is directly determined by space-charge-limited current measurements. The electron mobility is at least three orders of magnitude smaller than that for holes in the copolymer. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The interface thickness in two-component interpenetrating polymer networks (IPN) system based on polyacrylate and epoxy were determined using small-angle X-ray scattering (SAXS) in terms of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at various compositions and synthesized at variable conditions-temperature and initiator concentration. By viewing the system as a two-phase system with a sharp boundary, the roughness of the interface was described by fractal dimension, D, which slightly varies with composition and synthesis condition. Length scales in which surface fractals are proved to be correct exist for each sample and range from 0.02 to 0.4 Angstrom(-1). The interface in the present IPN system was treated as fractal, which reasonably explained the differences between Pored's law and experimental data, and gained an insight into the interaction between different segments on the interface. (C) 1997 Elsevier Science Ltd.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.
Resumo:
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are Suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. fit this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble Culture were assessed at a temperature range of 10 similar to 30 degrees C. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30 degrees C for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25 degrees C for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 similar to 26 degrees C) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield. Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30 degrees C, similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36 degrees N was proposed according to these basic measurements.
Resumo:
The cold-water subtidal brown alga Laminaria japonica has been commercially fanned in the Far East and has been on top of all marine-fanned species in terms of farming area and annual output worldwide. The successful trials of transplantation of young sporophytes from the north to the south in winter along the Chinese coast in the 1950s led to the spreading of cultivation activities down to a latitude of 25-26 degrees N. Up to today, nearly 50% of the annual output of this farmed alga, as a cold-water species, comes from the sub-tropical south in China. The demand to have high-temperature-tolerant strains/ecotypes in farming area calls for a practical method to judge and select the desired parental plants for breeding programs and for seedling production. In this paper, we report our results on using chlorophyll fluorescence measurement and short-term growth performance in tank culture to estimate the temperature tolerance of offspring from two populations, Fujian Farmed Population (FFP) sampled from Fujian province (latitude: 25-26 degrees N) in subtropical area and Qingdao Wild Population (QWP) sampled from Qingdao (latitude: 36 degrees N). Contrary to what has been usually thought, the results revealed that offspring from Qingdao wild population in the north showed better performance both in short-term growth and survival rates and in optimal quantum efficiency (F-v/F-m) when exposed to higher temperature (20-25 degrees C). This result was further confirmed by fluorescence quenching analysis. QWP distributed along the southern distribution limit at a latitude of 36 degrees N in the Pacific west coast is thus taken as a more ideal one than the fanned population in subtropical region as a source of parental plants for breeding high-temperature-tolerant varieties. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
C band RADARSAT-2 fully polarimetric (fine quad-polarization mode, HH+VV+HV+VH) synthetic aperture radar (SAR) images are used to validate ocean surface waves measurements using the polarimetric SAR wave retrieval algorithm, without estimating the complex hydrodynamic modulation transfer function, even under large radar incidence angles. The linearly polarized radar backscatter cross sections (RBCS) are first calculated with the copolarization (HH, VV) and cross-polarization (HV, VH) RBCS and the polarization orientation angle. Subsequently, in the azimuth direction, the vertically and linearly polarized RBCS are used to measure the wave slopes. In the range direction, we combine horizontally and vertically polarized RBCS to estimate wave slopes. Taken together, wave slope spectra can be derived using estimated wave slopes in azimuth and range directions. Wave parameters extracted from the resultant wave slope spectra are validated with colocated National Data Buoy Center (NDBC) buoy measurements (wave periods, wavelengths, wave directions, and significant wave heights) and are shown to be in good agreement.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.
Resumo:
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed. Two experiments into the use of the radar system were carried out at two sites, respectively, for calibration process in Zhangzi Island of the Yellow Sea, and for validation in the Yellow Sea and South China Sea. Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method. The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy. The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy. In particular, it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters, especially in detecting the significant wave height below 1.0 m.