955 resultados para LAYER THICKNESS
Resumo:
New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.
Resumo:
Turbulence and internal waves are probably important in generating layered structures in frontal region of marine environments (e.g. near river plumes outflow into the sea). Here we investigate the role of normal modes of internal waves in generation of layered structure in a part of Persian Gulf where river plume inters and in some laboratory experiments. The model prediction and observations show that layers so formed have a thickness of about 2m based on salinity variations with depth, but layers (about 5m) based on horizontal velocity profiles. Laboratory experiments with a plume outflow in a Filling Box profile also generate normal mode layered structure with 21H=0.5 (where A is layer thickness and H is the plume depth). In these experiments as Re of the flow is smaller than the Re of field flow. The normal modes are substantially dissipated with depth. Typical values of dissipation factor is about 0(100). This factor for field observation is 0(10) which is still substantial. Qualitative comparison between layered structure in field and laboratory is good. It should be emphasized that field observation is for semi-enclosed seas but the laboratory experiments are for enclosed region. Hence some of the discrepancies in the results of two cases are inevitable. Layered structures in marine environments are also produced by double diffusive convection. In this region this should be studied separately.
Resumo:
In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.
Resumo:
Self-assembled materials produced in the reaction between alkanethiol and Ag are characterized and compared. It is revealed that the size of the Ag substrate has a significant role in the self-assembly process and determines the reaction products. Alkanethiol adsorbs on the surface of Ag continuous planar thin films and only forms self-assembled monolayers (SAMs), while the reaction between alkanethiol and Ag clusters on inert surfaces is more aggressive and generates a significantly larger amount of alkanethiolate. Two dissimilar products are yielded depending on the size of the clusters. Small Ag clusters are more likely to be converted into multilayer silver-alkanethiolate (AgSR, R = CnH2n+1) crystals, while larger Ag clusters form monolayer-protected clusters (MPCs). The AgSR crystals are initially small and can ripen into large lamellae during thermal annealing. The crystals have facets and flat terraces with extended area, and have a strong preferred orientation in parallel with the substrate surface. The MPCs move laterally upon annealing and reorganize into a single-layer network with their separation distance approximately equal to the length of an extended alkyl chain. AgSR lamellar crystals grown on inert surfaces provide an excellent platform to study the melting characteristics of crystalline lamellae of polymeric materials with the thickness in the nanometer scale. This system is also unique in that each crystal has integer number of layers – magic-number size (thickness). The size of the crystals is controlled by adjusting the amount of Ag and the annealing temperature. X-ray diffraction (XRD) and atomic force microscopy (AFM) are combined to accurately determine the size (number of layers) of the lamellar crystals. The melting characteristics are measured with nanocalorimetry and show discrete melting transitions which are attributed to the magic-number sizes of the lamellar crystals. The discrete melting temperatures are intrinsic properties of the crystals with particular sizes. Smaller lamellar crystals with less number of layers melt at lower temperatures. The melting point depression is inversely proportional to the total thickness of the lamellae – the product of the number of layers and the layer thickness.
Resumo:
Este trabalho tem como objetivo melhorar a técnica de cultura em lâmina para ser usada na avaliação da viabilidade de leveduras sob diferentes condições fisiológicas. Inicialmente, foram otimizadas as condições ideais para o cultivo em lâmina de uma estirpe laboratorial (BY4741) e de uma estirpe industrial (NCYC 1214) da levedura Saccharomyces cerevisiae. O melhor protocolo foi obtido utilizando: YEPD agar com uma espessura de cerca de 2 mm; 20 μL de uma suspensão de 1 x 105 células/mL para a estirpe BY4741 ou de 5 x 104 células/mL para a estirpe NCYC 1214; uma câmara de humedecimento com 100 μL de água desionizada e um tempo de incubação de 24 h, a 25 ° C. Com o objetivo de facilitar a contagem das microcolónias, foi adicionado um corante (calcofluor white, CFW) ao meio YEPD agar. Ensaios preliminares, em YEPD líquido, contendo diferentes concentrações de CFW, permitiram verificar que o corante, até 5,0 μg/L, não inibe o crescimento da levedura. Uma concentração de 2,5 μg/L de CFW permitiu a coloração da parede das leveduras, não se observando células com morfologia alterada, sendo esta a concentração de CFW selecionado nos estudos subsequentes. A técnica de cultura em lâmina, com ou sem CFW, foi aplicada para avaliar a viabilidade de células saudáveis (células em fase exponencial de crescimento), células submetidas a stress de etanol [células expostas a 20% (v/v) de etanol, a 25 ºC, durante 2 h] e células envelhecidas (células incubadas em água, a 25 ° C, durante 48 h), da estirpe laboratorial. A percentagem de células viáveis não foi significativamente diferente entre as duas técnicas (com ou sem CFW), após uma incubação de 24 horas. Finalmente, a técnica de cultura de lâmina, contendo CFW, foi comparada com duas técnicas habitualmente usadas na indústria cervejeira: fermentação de curta duração e determinação da percentagem de células gemuladas. Os resultados obtidos através da técnica de cultura de lâmina, desenvolvida, seguem um padrão similar aos obtidos nos ensaios de fermentação de curta duração e aos da determinação da percentagem de células gemuladas. Os resultados obtidos sugerem que a técnica de cultura em lâmina, combinada com CFW, parece ser uma alternativa, fácil, rápida (em 24 h) e reprodutível, relativamente ao método convencional (técnica de plaqueamento), para a avaliação da viabilidade de células de levedura. Deverá ser realizado trabalho adicional a fim de validar o método com estirpes industriais.
Resumo:
Purtscher-like retinopathy is associated with retinal hemorrhages and ischaemia probably due to the complement-mediated leukoembolization. It is a rare and severe angiopathy found in conditions such as acute pancreatitis. Case. We present a case of a 53-year-old man who presented with a Purtscher-like retinopathy associated with the development of acute pancreatitis in the context of a Klatskin tumour (a hilar cholangiocarcinoma). The ophthalmologic evaluation revealed the best corrected visual acuity (BCVA) of 20/32 in the right eye (RE) and of 20/40 in the left eye (LE); biomicroscopy of anterior segment showed scleral icterus and fundoscopy revealed peripapillary cotton-wool spots, optic disc edema, and RPE hypo- and hyperpigmentation in the middle peripheral retina in both eyes with an intraretinal hemorrhage in the LE. 15 months after the initial presentation, without ophthalmological treatment, there was an improvement of BCVA to 20/20 in both eyes and optical coherence tomography (OCT) revealed areas of reduction of retinal nerve fiber layer thickness corresponding to the previous cotton-wool spots. Conclusion. Purtscher-like retinopathy should not be neglected in complex clinical contexts. Its unclear pathophysiology determines an uncertain treatment strategy, but a meticulous follow-up is compulsory in order to avoid its severe complications.
Resumo:
Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.
Resumo:
The purpose of this research is to study sedimentation mechanism by mathematical modeling in access channels which are affected by tidal currents. The most important factor for recognizing sedimentation process in every water environment is the flow pattern of that environment. It is noteworthy that the flow pattern is affected by the geometry and the shape of the environment as well as the type of existing affects in area. The area under the study in this thesis is located in Bushehr Gulf and the access channels (inner and outer). The study utilizes the hydrodynamic modeling with unstructured triangular and non-overlapping grids, using the finite volume, From method analysis in two scale sizes: large scale (200 m to 7.5km) and small scale (50m to 7.5km) in two different time durations of 15 days and 3.5 days to obtain the flow patterns. The 2D governing equations used in the model are the Depth-Averaged Shallow Water Equations. Turbulence Modeling is required to calculate the Eddy Viscosity Coefficient using the Smagorinsky Model with coefficient of 0.3. In addition to the flow modeling in two different scales and the use of the data of 3.5 day tidal current modeling have been considered to study the effects of the sediments equilibrium in the area and the channels. This model is capable of covering the area which is being settled and eroded and to identify the effects of tidal current of these processes. The required data of the above mentioned models such as current and sediments data have been obtained by the measurements in Bushehr Gulf and the access channels which was one of the PSO's (Port and Shipping Organization) project-titled, "The Sedimentation Modeling in Bushehr Port" in 1379. Hydrographic data have been obtained from Admiralty maps (2003) and Cartography Organization (1378, 1379). The results of the modeling includes: cross shore currents in northern and north western coasts of Bushehr Gulf during the neap tide and also the same current in northern and north eastern coasts of the Gulf during the spring tide. These currents wash and carry fine particles (silt, clay, and mud) from the coastal bed of which are generally made of mud and clay with some silts. In this regard, the role of sediments in the islands of this area and the islands made of depot of dredged sediments should not be ignored. The result of using 3.5 day modeling is that the cross channels currents leads to settlement places in inner and outer channels in tidal period. In neap tide the current enters the channel from upside bend of the two channels and outer channel. Then it crosses the channel oblique in some places of the outer channel. Also the oblique currents or even almost perpendicular current from up slope of inner channel between No. 15 and No. 18 buoys interact between the parallel currents in the channel and made secondary oblique currents which exit as a down-slope current in the channel and causes deposit of sediments as well as settling the suspended sediments carried by these currents. In addition in outer channel the speed of parallel currents in the bend of the channel which is naturally deeper increases. Therefore, it leads to erosion and suspension of sediments in this area. The speed of suspended sediments carried by this current which is parallel to the channel axis decreases when they pass through the shallower part of the channel where it is in the buoys No.7 and 8 to 5 and 6 are located. Therefore, the suspended sediment settles and because of this process these places will be even shallower. Furthermore, the passing of oblique upstream leads to settlement of the sediments in the up-slope and has an additional effect on the process of decreasing the depth of these locations. On the contrary, in the down-slope channel, as the results of sediments and current modeling indicates the speed of current increases and the currents make the particles of down-slope channel suspended and be carried away. Thus, in a vast area of downstream of both channels, the sediments have settled. At the end of the neap tide, the process along with circulations in this area produces eddies which causes sedimentation in the area. During spring some parts of this active location for sedimentation will enter both channels in a reverse process. The above mentioned processes and the places of sedimentation and erosion in inner and outer channels are validated by the sediments equilibrium modeling. This model will be able to estimate the suspended, bed load and the boundary layer thickness in each point of both channels and in the modeled area.
Resumo:
Purpose: To compare signs and symptoms of dry eye in keratoconus (KC) patients versus healthy subjects. Methods: A total of 15 KC patients (KC group, n = 15 eyes) and 16 healthy subjects (control group, 16 eyes) were enrolled in this study. The Schirmer I test with no anesthetic, tear break-up time (TBUT), corneal staining characteristics, and ocular surface disease index (OSDI) scores were evaluated for both groups. Impression cytology, combined with/scanning laser confocal microscopy (LCM), was performed to evaluate goblet cell density, mucin cloud height (MCH), and goblet cell layer thickness (CLT). Finally, tear concentrations of di-adenosine tetraphosphate (Ap4A) were assessed. Results were statistically analyzed using Shapiro–Wilk and non-parametric Wilcoxon rank sum tests. Statistical significance was set at p < 0.05. Results: KC patients had lower tear volumes and greater corneal staining than did healthy subjects (p < 0.05). OSDI scores were 44.96 ± 8.65 and 17.78 ± 6.50 for the KC and control groups, respectively (p < 0.05). We found no statistically significant differences in TBUT between groups. Impression cytology revealed lower goblet cell densities in KC group patients versus control group subjects (84.88 ± 32.98 and 128.88 ± 50.60 cells/mm,2 respectively, p < 0.05). There was a statistically significant reduction in MCH and CLT in KC group patients compared with control group subjects. Ap4A tear concentrations were higher in KC group patients than in control group subjects (2.56 ± 1.10 and 0.15 ± 0.12 µM, respectively, p < 0.05). Conclusions: The parameters evaluated in this study indicate that KC patients suffer greater symptoms of dry eye and greater tear instability, primarily due to the decreased mucin production in their tears, than do healthy patients with no KC.
Resumo:
Objective: To evaluate the differences between goblet cell density (GCD) and symptomatology after one month of orthokeratology lens wear. Methods: A pilot, short-term study was conducted. Twenty-two subjects (29.7. ±. 7.0 years old) participated voluntarily in the study. Subjects were divided into two groups: habitual silicone hydrogel contact lens wearers (SiHCLW) and new contact lens wearers (NCLW). Schirmer test, tear break up time (TBUT), Ocular Surface Disease Index (OSDI) questionnaire and conjunctival impression cytology. GCD, mucin cloud height (MCH) and cell layer thickness (CLT) were measured. All measurements were performed before orthokeratology fitting and one month after fitting to assess the evolution of the changes throughout this time. Results: No differences in tear volume and TBUT between groups were found (p>0.05). However, the OSDI score was statistically better after one month of orthokeratology lens wear than the baseline for the SiHCLW group (p=0.03). Regarding the goblet cell analysis, no differences were found in CLT and MCH from the baseline visit to the one month visit for the SiHCLW compared with NCLW groups (p>0.05). At baseline, the GCD in the SiHCLW group were statistically lower than NCLW group (p<0.001). There was a significant increase in GCD after orthokeratology fitting from 121±140cell/mm2 to 254±130cell/mm2 (p<0.001) in the SiHCLW group. Conclusion: Orthokeratology improves the dry eye subject symptoms and GCD after one month of wearing in SiHCLW. These results suggest that orthokeratology could be considered a good alternative for silicone hydrogel contact lens discomfort and dryness. © 2016 British Contact Lens Association.
Resumo:
In this research there was an evaluation of the best conditions of nitriding in plasma within a cathodic cage at an atmosphere of 80% N2-20%H2 in samples of tool manganese steel AISI D6, cold working, treated thermally in the following conditions: tension relief, treated thermally to temperature of maximum heat, temperate heat and temperate and temperate heat. A pressure of 2.5mbar and temperatures of 400 and 300ºC com treatment time of two and three hours were used to evaluate its performance as cutting tool (punch) of bicycle backs. Hardness, micro-structural aspects (layer thickness, interface, grain size etc), and crystal phases on the surface were appraised. When treated to tension relief, thermally treated to maximum heat temperature, temperature and temperate heat, the samples presented hardness levels of 243HV, 231HV, 832HV, and 653HV, respectively. The best nitrification conditions were: four hours and 300ºC for heat samples. A superficial hardness of 1000HV and a 108µm thickness for the nitrided layer were found in these samples
Resumo:
In the research, steel samples tool AISI D2, treated thermally, in the conditions: relief of tension, when maximum, seasoned and seasoned was treated thermally in the temperature of revenimento and revenida had been nitrited in plasma with cathodic cage, in atmosphere of 80%N2:20%H2. One used pressure of 2,5 mbar, 400 and 480°C temperatures with treatment time of 3 and 4 hours, with the objective to evaluate its performance in pipes cut tool. It was compared that the performance of the same steel when only thermally treated, both with tension relief. It was evaluated its hardness. Microstructural aspects (the layer thickness, interface, graisn size, etc) and crystalline phases on the surface. Besides, it was verified accomplishment possibility of nitriding simultaneous to annealing treatment. The tempering samples had presented hardness levels of 600 HV, while in nitrited samples these values had been 1100 HV
Resumo:
The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film
Resumo:
This article addresses the problem of spray vaporization and combustion in axisymmetric opposed-jet configurations involving a stream of hot air counterflowing against a stream of nitrogen carrying a spray of fuel droplets. The Reynolds numbers of the jets are assumed to be large, so that mixing of the two streams is restricted to a thin mixing layer that separates the counterflowing streams. The evolution of the droplets in their feed stream from the injection location is seen to depend fundamentally on the value of the droplet Stokes number, St, defined as the ratio of the droplet acceleration time to the mixing layer strain time close to the stagnation point. Two different regimes of spray vaporization and combustion can be identified depending on the value of St. For values of St below a critical value, equal to 1/4 for dilute sprays with small values of the spray liquid mass loading ratio, the droplets decelerate to approach the gas stagnation plane with a vanishing axial velocity. In this case, the droplets located initially near the axis reach the mixing layer, where they can vaporize due to the heat received from the hot air, producing fuel vapor that can burn with the oxygen in a diffusion flame located on the air side of the mixing layer. The character of the spray combustion is different for values of St of order unity, because the droplets cross the stagnation plane and move into the opposing air stream, reaching distances that are much larger than the mixing layer thickness before they turn around. The vaporization of these crossing droplets, and also the combustion of the fuel vapor generated by them, occur in the hot air stream, without significant effects of molecular diffusion, generating a vaporization-assisted nonpremixed flame that stands on the air side outside the mixing layer. Separate formulations will be given below for these two regimes of combustion, with attention restricted to the near-stagnation-point region, where the solution is self-similar and all variables are only dependent on the distance to the stagnation plane. The resulting formulations display a reduced number of controlling parameters that effectively embody dependences of the structure of the spray flame on spray dilution, droplet inertia, and fuel preferential diffusion. Sample solutions are given for the limiting cases of pure vaporization and of infinitely fast chemistry, with the latter limit formulated in terms of chemistry-free coupling functions that allow for general nonunity Lewis numbers of the fuel vapor.
Resumo:
We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( 112̄ 2 ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.