983 resultados para LASER BEAM MACHINING
Resumo:
Morphological and functional effects of transmyocardial laser revascularization (TMLR) are analyzed in an acute setting on a porcine model. Ten channels were drilled in the left lateral wall of the heart of 15 pigs (mean weight, 73 +/- 4 kg) with a Holmium-YAG laser (wavelength: 2.1 mu, probe diameter: 1.75 mm). Echocardiographic control was performed before the TMLR procedure as well as 5 min and 30 min thereafter. Echocardiographic parameters were recorded in short-axis at the level of the laser channels, and included left ventricular ejection fraction, fractional shortening and segmental wall motility of the channels' area (scale 0-3: 0 = normal, 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). After sacrifice the lased region was sliced perpendicularly to the channels for histological and morphometrical analysis. Five minutes after the drilling of the channels, all the echocardiographic index worsened significantly in comparison with baseline values (p < 0.01). All recovered after 30 min and showed no difference with baseline values. Cross-section of the channel lesions measured 8.8 +/- 2.4 mm2 which is more than three times that of the probe (p < 0.01). In acute conditions, the lesions due to the TMLR probe are significantly larger than the probe itself and cause a transient drop of the segmental wall motility on a healthy myocardium. These results suggest that TMLR should be used cautiously in the clinical setting for patients with an impaired ventricular function.
Resumo:
BACKGROUND: Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.¦METHODS: Laser Doppler flow (FluxExplorer) and mole analyser (MA) score (FotoFinder) were applied to histologically verified melanocytic nevi (33) and malignant melanomas (12).¦RESULTS: Mean perfusion and MA scores were significantly increased in melanoma compared to nevi. However, applying an empirically determined threshold of 16% perfusion increase only 42% of the melanomas fulfilled the criterion of malignancy, whereas with the mole analyzer score 82% of the melanomas fulfilled the criterion of malignancy.¦CONCLUSION: Laser Doppler imaging is a highly sensitive technology to assess skin and skin tumor perfusion in vivo. Although mean perfusion is higher in melanomas compared to nevi the high numbers of false negative results hamper the use of this technology for early melanoma detection.
Resumo:
Abstract. Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characteriza- tion and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is com- bined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS in- strumental error is small enough to enable detection of pre- cursory displacements of millimetric magnitude. This con- sists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Dis- placement measurement are improved considerably by ap- plying Nearest Neighbour (NN) averaging, which reduces the error (1σ ) up to a factor of 6. This technique was ap- plied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumen- tal error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by apply- ing the NN averaging method. These results show that mil- limetric displacements prior to failure can be detected using TLS.
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
BACKGROUND: Collateral damage to upper eyelid margin during proton beam radiotherapy (PBR) for choroidal melanoma may cause squamous metaplasia of the tarsal conjunctiva with keratinisation, corneal irritation, discomfort and, rarely, corneal perforation. We evaluated transpalpebral PBR as a means of avoiding collateral damage to the upper eyelid margin without increasing the risk of failure of local tumour control. METHODS: Retrospective study of consecutive patients who underwent PBR for choroidal melanoma between 1992 and 2007 at the Royal Liverpool University Hospital and the Douglas Cyclotron at Clatterbridge Cancer Centre, UK. RESULTS: Sixty-three patients were included in this study. Mean basal tumour diameter and tumour thickness were 11.8 mm and 3.6 mm, respectively. PBR mean beam range and modulation were 26.5 mm and 16.9 mm respectively. The eyelid margin was included in the radiation field in 15 (24%) eyes. The median follow-up was 2.5 years. Local tumour recurrence developed in 2 (3.2%) patients. In these two cases that developed tumour recurrence the transpalpebral treatment did not involve the eyelid margin. Six (9.5%) patients died of metastatic disease. No eyelid or ocular surface problems developed in any of the 48 patients who were treated without eyelid rim involvement, while 7 of the 15 patients with unavoidable irradiation of the eyelid rim developed some degree of madarosis. These seven patients all received more than 26.55 proton Gy to the eyelid margin. Symptoms, such as grittiness occurred in 12% of 48 patients without eyelid margin irradiation as compared with 53% of 15 patients whose lid margin was irradiated. CONCLUSIONS: Transpalpebral PBR of choroidal melanoma avoids eyelid and ocular surface complications without increasing failure of local tumour control.
Resumo:
PURPOSE: To report the use of argon laser iridoplasty in the management of uveitic acute angle-closure glaucoma. METHODS: Interventional case report. RESULTS: A 46-year-old man developed uveitic acute angle-closure glaucoma with an intraocular pressure (IOP) of 65 mmHg. After unsuccessful attempts with medical treatment and two laser peripheral iridotomies, iridoplasty allowed to break posterior synechiae, open the angle, and reduce the IOP within a few hours. CONCLUSIONS: Argon laser iridoplasty allowed rapid reduction of IOP and prevented the need for emergency surgery. Therefore, the authors stipulate that it is a viable management option in active uveitic acute angle-closure glaucoma.
Resumo:
Technical Report
Resumo:
Design guide
Resumo:
Design Manual
Resumo:
Long-range Terrestrial Laser Scanning (TLS) is widely used in studies on rock slope instabilities. TLS point clouds allow the creation of high-resolution digital elevation models for detailed mapping of landslide morphologies and the measurement of the orientation of main discontinuities. Multi-temporal TLS datasets enable the quantification of slope displacements and rockfall volumes. We present three case studies using TLS for the investigation and monitoring of rock slope instabilities in Norway: 1) the analysis of 3D displacement of the Oksfjellet rock slope failure (Troms, northern Norway); 2) the detection and quantification of rockfalls along the sliding surfaces and at the front of the Kvitfjellet rock slope instability (Møre og Romsdal, western Norway); 3) the analysis of discontinuities and rotational movements of an unstable block at Stampa (Sogn og Fjordane, western Norway). These case studies highlight the possibilities but also limitations of TLS in investigating and monitoring unstable rock slopes.
Resumo:
A 41-year-old male presented with severe frostbite that was monitored clinically and with a new laser Doppler imaging (LDI) camera that records arbitrary microcirculatory perfusion units (1-256 arbitrary perfusion units (APU's)). LDI monitoring detected perfusion differences in hand and foot not seen visually. On day 4-5 after injury, LDI showed that while fingers did not experience any significant perfusion change (average of 31±25 APUs on day 5), the patient's left big toe did (from 17±29 APUs day 4 to 103±55 APUs day 5). These changes in regional perfusion were not detectable by visual examination. On day 53 postinjury, all fingers with reduced perfusion by LDI were amputated, while the toe could be salvaged. This case clearly demonstrates that insufficient microcirculatory perfusion can be identified using LDI in ways which visual examination alone does not permit, allowing prognosis of clinical outcomes. Such information may also be used to develop improved treatment approaches.